
HotFuzz
Developer’s guide

Authors:
Dusan Domany, Stepan Henek, Peter Kmet, Jan Stanek, Martin Zember

HotFuzz Developer’s guide

Special Thanks

We would like to thank our project leader Daniel Toropila for his invaluable comments and
leadership skills that lead this project to a successful finish. We would also like to express our
never-ending gratitude to Pavel Kankovsky for his ideas, hints and advices during the whole project
development phase.

2

HotFuzz Developer’s guide

Table of Contents
1 Introduction..5

1.1 Purpose of the Project...5
1.2 Components..5
1.3 Similar Work...8

The Peach Fuzzing Platform...9
Fusil the fuzzer..9
Sulley..9
Bunny the Fuzzer..9
SAGE..9
TAOF...9
SPIKE..9
Webfuzzer...10
Scratch...10
Mangle..10

2 Employed Technologies..11
2.1 Peach...11
2.2 Wireshark..11
2.3 Qt..12

3 Architecture..13
3.1 Peach in the Middle..13

Peach...13
Pitm...14

GUI Communicator..14
Pitm Schema...16
Proxy – TCP Version..17
Handling Data...17
Recording/Fuzzing...18
Finishing the Iteration..19
Monitoring the Applications...19
Proxy – UDP Version...20

Pitm Files Overview..20
3.2 Data Analysis..21

Data2pcap Module..22
Data2pcap in HotFuzz...22
Data2pcap Usage...23
How to Create a Fake UDP Packet and Save it to a Pcap File..23
How to Create a TCP Packet and Save it to a Pcap File...23
Create a TCP Connection..24
Modification and Extension of Data2pcap..25
Module tm_export...25

Introduction..25
Technical Issues..25
Usage..26
Example Usage...26
Input/Output Structures..27
Modification and Extension of tm_export..28

3

HotFuzz Developer’s guide

Calling Wireshark Code from Python...29
Converting Wireshark Structures into Peach Structures...29

3.3 Data Matching...30
3.4 Recorded Data Aggregation ...31
3.5 Structure of the HotFuzz Configuration File..32

4 GUI...33
Source Code Generation...33
Main Functions Overview...33
Application File Overview..33

4.1 Dialogs..34
Basic Dialog Logic..34
Standard Qt Dialogs..34
Main Window Dialog..34
Application Settings..35
Intro Dialog...35
Preferences Dialog..36
New Project Dialog...36
Recent Project Dialog...36
Project Info Dialog..36
Action View Dialog...37

4.2 Projects ...37
Project Files...37
XML Manipulation...37
Dump Files..38

4.3 Widgets...38
Own Widgets...39
Qt Designer Plugin..39
Undo Actions...39

4.4 External Programs ..39
Peach Communicator..40
Starting Pitm...40
Stopping Pitm..41

5 Development of HotFuzz...42
5.1 History of the Project..42
5.2 Development of the Dissection Process in HotFuzz...43

6 Strategic Decisions...45
6.1 Why Peach is Used...45
6.2 Why the Wireshark Libraries are Used...45

7 Future Work..46
7.1 GUI...46

 Appendix A: Structure of the HotFuzz Configuration File..48

4

HotFuzz Developer’s guide

1 Introduction

1.1 Purpose of the Project
The aim of the HotFuzz project is to provide a tool for discovering security vulnerabilities. It uses

a widely used approach called “fuzzing” that is based on providing invalid data to a program so that
it could lead to an unexpected behaviour of the program. The HotFuzz project implements a proxy
functionality between network applications. It modifies the data before forwarding them to the
fuzzed program. The benefit of the HotFuzz project is that it can automatically parse the streams of
data without a detailed user-provided protocol specification and apply the fuzzing rules to the
resulting parsed blocks.

1.2 Components
Figure 1.1 (on the next page) displays relations between HotFuzz components. Short descriptions

of the components are listed below.

Peach in the middle: Peach in the middle is an adaptation of Peach, which transforms Peach into a
network proxy and integrates most of the important HotFuzz ideas. It contains the central logic of
the application and connects the other HotFuzz components together.

Proxy: HotFuzz Proxy replaces the classical Peach State Model and handles the communication
between the client and the server application. The proxy can run in recording or in fuzzing mode. It
supports both TCP and UDP communication.

Recorded data aggregation: It merges similar messages from all the recorded test cases into a
single data model. Creates a compact data representation of multiple cases of a client-server
communication.

Configuration file generation: Creates a configuration file for the fuzzing phase based on the data
recorded during the recording phase and the configuration done by the user via the Graphical User
Interface.

Data matching: It identifies mutable elements during the fuzzing process. The matching is based
on the comparison of the actual data forwarded through the proxy with the models recorded by the
user during the recording phase.

Customized WindowsDebugEngine monitor: Customized version of the Peach debug monitor.
The class was modified to provide the functionality required by HotFuzz.

Custom Process monitor: Custom HotFuzz monitor for handling basic process manipulation. In
comparison with the original Peach process monitor it can handle much more complicated
processes. The monitor was written from scratch to satisfy HofFuzz needs.

5

HotFuzz Developer’s guide

6

Figure 1.1: Relations among the HotFuzz components

HotFuzz Developer’s guide

Netstat based port scanning: The port scanner retrieves information about currently opened ports
on the local machine. Instead of blindly trying to connect to certain ports, it uses Windows functions
to retrieve the information. The component works only on machines running Microsoft Windows.

Custom publisher: The component stores values that are important for the communication with
client and server.

Custom Random Fuzzing strategy: The HotFuzz Random Mutation strategy needed to be written
from scratch to satisfy HotFuzz needs. One of its features is that it can be provided with a random
seed to achieve a pseudo-random behaviour. The strategy meets basic requirements on Peach
mutation strategies.

GUI Communicator: The component contains a logic for receiving instructions from the graphical
user interface and sending back an information about the current state of the recording/fuzzing
process. The communication runs in parallel with the recording/fuzzing process in a separate thread.

Data analysis: Data analysis is used to analyse the data passing through HotFuzz. The input to the
data analysis process is the data coming from the client application to the server application and in
the other direction too. The output of the data analysis process is a data model—a tree-like structure
where every node represents a part of data with a specific meaning and a descriptive name (where
possible).

Data receive: The data are received from a socket and stored to a bytestring. The bytestring is then
provided to the packet reconstruction process.

Packet reconstruction: Raw data received from a socket are wrapped up in a fake packet. The fake
packet consist of a pcap global header, pcap packet header, Ethernet header, IP header and TCP or
UDP header.

Packets dissection: Packet dissection is a process of detailed packet analysis. The packet is
segmented to the smallest parts of data with its own meaning. These parts are also organized to
blocks with its own meaning (where possible).

Additional data analysis: Additional data analysis consists of a few processes that are applied to
the results of the packet dissection. These are mainly checks of data types and consistency.

Transforming C-structures into Python-structures: This component is designed to convert all
necessary C structures into Python structures. It also makes the calling of shared library functions
written in C possible within Python source code.

Peach structures creation: The component creates proper Peach structures based on the provided
Python structures. Due to the differences between the Wireshark structures and the Peach structures,
variety of things need to be corrected including data types and alignment.

Strings tokenization: The component performs additional tokenization of string elements to
maintain greater granularity of the dissected data. The tokenization uses set of separators and
brackets to split the strings into smaller parts. Fuzzing of specific URL parameters would not be
possible without this component.

7

HotFuzz Developer’s guide

Finding relations: A relation finding process tries to find relations between different parts of data
contained within one message. We have implemented size relations so far (when a data segment
represents the size of another data segment, etc.).

Graphical User Interface: The GUI component is designed to make use of the HotFuzz program
as easy and effective as possible. It consists of components listed below.

Dialogs: The Graphical User Interface contains many dialogs which handle interactive
communication with the user. These dialogs provide the user with variety of controls for easy
management of the application.

Main window: This window is the most important component of our GUI. It opens all other
dialogs and processes signals from numerous types of events. Moreover, all external processes are
started within this dialog.

Process handling: One of the main purposes of the GUI is to manage the Peach in the middle
process, which has to carry out the recording and the fuzzing phases. There are also other external
programs, which are started from the GUI: a text editor and a debugger.

Storing application settings: Whenever the Main Window is starting, it loads application settings
and modifies its internal variables according to these settings. Whenever the Main Window is
closing, it prompts whether to store unsaved changes to the project and then it stores its internal
variables to the application settings.

XML manipulators: The GUI application is capable of manipulating (storing and loading) three
types of XML files – fuzzing.xml, recording.xml and project.xml. The fuzzing and the recording
XML are passed to Peach in the middle as one of its parameters. The project XML is used to store
overall project information.

Viewing crash details: When Peach in the middle is started in the fuzzing mode a new directory in
“project dir”/dumps/ appears. This directory is created by Peach and the GUI application is used to
display its contents.

1.3 Similar Work
The IT security community was asked1 to suggest a topic for the project. We were recommended

to enhance some of the existing tools instead of building yet another fuzzer or a fuzzing framework.
Therefore we decided to implement extend an existing fuzzer so that it could be used also as a
fuzzing proxy. There are some commercial fuzzers which implement this feature, but none of the
open-source fuzzers fully integrates this functionality.

Different fuzzers and the fuzzing frameworks were tested by the development team at the early
stage of the project. Here is the list of the examined fuzzers.

1 Dailydave mailing-list: http://lists.immunitysec.com/mailman/listinfo/dailydave
Fuzzing mailing-list: http://www.whitestar.linuxbox.org/pipermail/fuzzing/

8

http://lists.immunitysec.com/mailman/listinfo/dailydave
http://www.whitestar.linuxbox.org/pipermail/fuzzing/

HotFuzz Developer’s guide

The Peach Fuzzing Platform

Peach is a framework for creating fuzzers. It is written in Python and it is easily extendible. We
decided to use this program as the one of the main parts of the HotFuzz project. Peach is currently
being developed and supported by the main author (Michael Eddington). Michael came up with
many ideas that we used when designing the initial structure of our project. A detailed description of
the Peach Fuzzing Platform is located in the other part of this document.

Fusil the fuzzer

Fusil the fuzzer is an open-source fuzzing framework written in Python. It was successfully used for
finding security-related bugs in software like PHP, glibc, libexif, ClamAV. Many bugs were found
in Python itself (see http://bitbucket.org/haypo/fusil/wiki/Python).

Sulley

Sulley is similar to Peach in the way that it has the abilities not only to generate data, but also to
monitor the network, the target program, to revert the target program state if needed and to track
and categorize detected faults.

It has an installation tool that can install all dependencies. We were inspired by this feature
during the creation of our HotFuzz installer.

Bunny the Fuzzer

Bunny the Fuzzer is a “smart” fuzzer that uses a loop from the traced program. This feature
provides the fuzzer with run-time feedback on how to alter the inputs to increase the code coverage.

SAGE

SAGE is a proprietary tool. It managed to crash an application shipped as part of Office 2007 43
times (ftp://ftp.research.microsoft.com/pub/tr/TR-2007-58.pdf).

TAOF

TAOF (The art of fuzzing) is a fuzzing framework that is easy to use even for people without
programming skills and it is probably a good start for those that are new in the field of fuzzing. The
official webpage provides some videos on how to discover vulnerabilities using TAOF.

SPIKE

SPIKE is an API that enables a programmer to specify a network protocol. The fuzzed data are
generated according to this specification. It was created in 2002 and the language used is C.

9

http://bitbucket.org/haypo/fusil/wiki/Python

HotFuzz Developer’s guide

Webfuzzer

Webfuzzer does not provide any user-friendly interface, it is focused on advanced users who can
modify the source code according to their requirements. It does not provide almost any
documentation and the source code itself is rather poorly commented. It has not been updated for
years.

http://gunzip.altervista.org/g.php?f=projects.

Scratch

Scratch is another fuzzer that needs to modify the Python source code in order to configure it. It
does not provide any documentation at all except a few comments in the code. It is probably not
developed any more.

http://packetstormsecurity.org/UNIX/misc/scratch.rar

Mangle

Mangle has less than 500 lines of code. It creates a CGI script from a C source code which fuzzes
HTML syntax and tries to crash the viewing browser.

http://lcamtuf.coredump.cx/soft/mangleme.tgz

10

http://lcamtuf.coredump.cx/soft/mangleme.tgz
http://packetstormsecurity.org/UNIX/misc/scratch.rar
http://gunzip.altervista.org/g.php?f=projects

HotFuzz Developer’s guide

2 Employed Technologies

2.1 Peach
Peach is a framework for building fuzzers. It has been developed since 2004 by Michael

Eddington. Peach was released under MIT license, so any person is allowed to obtain a copy of
Peach and deal in the Software without restriction.

Peach is basically being created by a single author and it is still under active development. Mr.
Eddington organizes workshops for participants, who represent something like a small Peach
community. Documentation of Peach can be found on http://peachfuzzer.com/. Many parts of the
documentation are incomplete or missing. Many parts are also out of date. However, it is probably
the best place to start getting familiar with Peach.

Another great source of information is the Peach mailing-list at peachfuzz@googlegroups.com.
Peach users ask many questions there and Mr. Eddington actively manages this mailing-list,
answers the questions and gives advices on how to make Peach running, deals with different issues,
etc. Some of the workshop students started to participate on the mailing-list management recently,
too. More experienced users send bug fixes and proposals for new features. Some of them are being
integrated into upcoming versions of Peach. One of the integrated bug fixes was also a correction of
the Peach Agent behaviour proposed by the HotFuzz team.

2.2 Wireshark
Wireshark is a multiplatform packet analyser. It is the successor of Ethereal and has quite a long

development history beginning in the 1990s. Although it is definitely not the only packet analyser
existing nowadays, we can say that it is surely the most widely used one. The biggest advantages of
Wireshark are that it is free and open source.

Packet analysis is a process in which the network communication is captured and its parts
(packets) are inspected and segmented into smaller parts with a defined meaning. Packet analysers
are automated tools that provide the communication capturing and packet analysis functionality,
often offering something extra like statistics, graphs etc. More information can be found at
http://en.wikipedia.org/wiki/Packet_analyzer. We can also point you to the user manual part of the
HotFuzz documentation which contains the description of some basic terms connected with this
problematic in the Basic concepts section.

We do not wish to waste time and space by repeating things that are available in numerous places
on the Internet so if you are interested in using Wireshark, you should definitely go to its homepage
at www.wireshark.org. If you only need to know some basic information about Wireshark we
recommend you to pay a visit to its Wikipedia page at http://en.wikipedia.org/wiki/Wireshark.

If you plan to adapt Wireshark or its libraries for your own project we highly recommend you to
join the Wireshark development community and use one of the numerous mailing lists available at
http://www.wireshark.org/lists/. This can save you quite some time and nerves.

11

http://www.wireshark.org/lists/
http://en.wikipedia.org/wiki/Wireshark
http://peachfuzzer.com/
http://en.wikipedia.org/wiki/Packet_analyzer

HotFuzz Developer’s guide

2.3 Qt
The GUI uses the PyQt4 library, which provides bindings for the Nokia’s Qt application

framework. This makes the GUI application very portable, because the Python interpreter and
PyQt4 are ported to the vast majority of nowadays operating systems.

To create the code more effectively, we decided to use the Qt Designer to design a skeleton of
dialogs.

12

HotFuzz Developer’s guide

3 Architecture

3.1 Peach in the Middle

Peach

To understand the Peach in the middle, it is first needed to understand how Peach works. The
Peach execution process can be briefly described as follows:

The first step is the initialization of Peach, which consists of parsing of command line options
and checks whether the Peach dependencies are properly installed.

The Peach Engine is then started. It uses the Peach Parser to parse the input configuration file
and to create the appropriate components. After creation of all the necessary components and
performing some additional initialization, the Peach Engine enters the main process loop, in which
the test cases are executed.

During each of the test cases, Peach runs a State Machine. The State Machine is a deterministic
finite state machine containing states based on the users configuration. One of these States needs to
be flagged as initial. Each of these States consists of one or more Actions. When the State Machine
enters a State, it runs sequentially all of its Actions. For each Action the user can also specify
circumstances under which the Action should be performed. Peach has a fixed list of available

13

Figure 3.1:Peach Architecture

HotFuzz Developer’s guide

Action types, which include connecting to a remote host (connect), accepting connection (accept),
sending data (output), receiving data (input), calling specific Python method (call), changing state
(changeState) etc. If all of the Actions from a single State are executed without changing a State, the
execution of the State Machine is ended.

Each output Action needs to have a template. This template is called Data Model and represents
the structure of the message being sent. Whenever Peach runs an output Action, it performs a
mutation on the specified template, concatenates all the values from the template and uses the result
of the concatenation as an output.

The mutation is performed by a special object called Mutation Strategy, which uses its internal
logic to select elements from the Data Model and applies Mutators to these elements. Mutators
provide values for the elements and these values are then used instead of the original ones.

During the whole process Peach interacts with a Peach Agent to maintain control over the tested
application and to receive information about the applications current state. The user needs to specify
a Monitor which is used by the Agent to handle (start/stop) and monitor the tested application. After
each iteration Peach requests the Agent to detect whether any fault occurred. A typical example of a
fault is an application crash. If Peach receives a positive answer (e.g. the application crashed), it
requests the Agent to send any information related to the fault that are available. To satisfy this
Peach request, the Monitor needs to implement a specific method, which is used to retrieve the
requested data. A typical example of such data is a WinDbg dump file. This file is generated by the
Windows Debug Engine after an application crash, if the application ran with Windows Debugger
attached.

The last object in the Peach Architecture schema is called Peach structures. These structures are
defined in the file dom.py and include objects like Peach String, Peach Number etc., which come
with number of useful methods and make the Peach code much more clear.

Pitm

Peach in the middle (shortly Pitm) changes the original Peach execution process in an early stage
of the Peach State Machine run. If certain options are specified on the command line, then the
execution of the Peach State Machine code is intercepted and HotFuzz code is used instead.

As the matter of fact, the changes were done very carefully, so Pitm can still be used as an
original Peach and only if the user specifies certain options, the HotFuzz functionality is activated.
We took care to limit modifications in the Peach code and to keep them localized, because Peach as
a software is still evolving and we wanted to be able to easily migrate the HotFuzz functionality to
the newer versions of Peach if needed.

GUI Communicator

One of the important enhancements introduced in HotFuzz is that the whole process can be
controlled via a Graphical User Interface. We decided not to integrate the Graphical User Interface
directly, because that would require a lot of modifications to the original Peach code, which we
wanted to prevent. Instead, the GUI runs as an independent process and interactively communicates
with the Pitm process via a local port. The Pitm process runs a separate thread, which handles the
interactive communication with the GUI.

The thread receives UDP packets on the specified port. Received messages are expected to be
32-bit integers encoded into hex-format, so the length of the messages is expected to be exactly 8
bytes. The messages are decoded and the following values are recognized as instructions:

14

HotFuzz Developer’s guide

• “2”: Store the address from which the packet was sent and periodically send number of the
current iteration to this address. If a fault was identified in the last iteration, then send the
iteration number as a negative integer

• “3”: Terminate the entire process (requested when the button Stop or the button Stop All is
pressed)

• “4”: Pause the main Pitm thread (requested when the button Pause is pressed)
• “5”: Unpause the main Pitm thread (requested when the button Unpause is pressed).

Value “1” was reserved for instructing a single Agent to stop running its application and is not
currently used. The interaction with the main Pitm thread is handled using the shared memory. Part
of the functionality is implemented in the method PpAction.guiCommunicator(), which the
main Pitm thread runs at the beginning of each iteration. The following actions are performed when
a termination is requested:

• the main Pitm thread is interrupted to prevent race conditions
• the Agents are instructed to terminate any application that they are currently running and to

switch to a passive mode
• the GUI is informed that the termination was successful
• the whole process exits

The Agents need to be contacted remotely as they can run on different machines. If the Agents
are not responding, the whole termination process might take longer.

15

HotFuzz Developer’s guide

Pitm Schema

Now let us take a look at a schema of the main Pitm thread. In a simple way, the schema can be
described as follows:

The HotFuzz initialization is basically an extended Peach initialization. Additional commandline
options are parsed here, which can be used to activate the Pitm functionality and pass some related
values. Some of the important HotFuzz structures are also created here and the thread that handles
the communication with the Graphical User Interface is also created and started at this point.

The execution process then continues by starting the ordinary Peach Engine and performs all the
standard Peach operations until it starts executing the Peach State Machine. The original Peach
parser was written in a very flexible way and we were therefore able to design the structure of the
HotFuzz configuration file, so it could be processed by only slightly modified version of the parser.

The HotFuzz Proxy Engine is started at the point, where the Peach State Machine would
normally execute. In case that the user specifies certain options, the standard Peach code is
intercepted and the HotFuzz code is used instead. If the user specifies an option --hotrec on the
commandline, the HotFuzz Proxy Engine starts in a recording mode. If the user specifies an option
--hotfuzz, the Engine starts in a fuzzing mode. Otherwise the execution of the standard Peach State
Machine is performed.

The HotFuzz Proxy Engine uses socket select() to dynamically handle the communication
with the client and the server application. It plays an important role in our application and went
through multiple reconstructions to meet all the requirements related to the HotFuzz ideas (some of
them were figured out during the development process). The proxy needs to be able to

16

Figure 3.2: HotFuzz architecture

HotFuzz Developer’s guide

simultaneously handle the communication with the client and the server. At the same time, it needs
to have a good control over the communication, make sure that some messages are not sent too
early etc. The proxy needs to know when it is supposed to read data and when it is allowed to send
them. In short the features can be described as follows:

• Storing received messages
• Requesting a real-time data analysis and a real-time fuzzing over the stored messages
• Handling the situations when the data analysis requires more data before it can return the

result
• Propagating connection close and dealing with network errors
• Finishing the communication when the end of the iteration is identified

There are different instances for TCP and UDP, because these two protocol families require a
slightly different approach. Let us take a look at the TCP version first.

Proxy – TCP Version

The proxy first binds a socket for a communication with the client and then requests client Agent
to run the Activating Command (or start the client application in case of StartOnCall). So when the
client tries to connect, the proxy is already listening on the specified port. The proxy then tries to
connect to the server application. Because the server application might not be ready yet, the proxy
makes 30 attempts during 30 seconds before it gives up.

Next, the proxy enters a reading phase. During this phase it tries to read as much data as possible
in a very short time. This is the first line of defence against an issue that we called segmentation.
The segmentation means that only part of the sent data were already received, so the data analysis
might not be able to fully analyse the received message. There is no guaranteed way to protect
against this issue. The segmentation might have many forms. The message (packet) can be split in
the headers part, in the body part, it can be missing only a few last characters, or the received part of
the message might be so short, that it is impossible to tell what it is. The dissection process might be
therefore confused by the data it was supplied with. We brought multiple techniques into our
application to deal with the issue and the current state is considered to be very stable. Majority of
the techniques forms part of the Data analysis modules.

If the proxy does not receive any data in 0.01 second, it switches to a sending phase. During this
phase the proxy first requests the data analysis over the stored messages. If the data analysis does
not return any result, it means that the data it was supplied with were probably incomplete. In that
case the proxy continues reading messages and passing them to the data analysis until the data
analysis returns a valid result.

Handling Data

Now let us take a closer look at this step, because there is more going on here under the hood.
The data analysis need to be supplied with some information regarding the data. This information
includes the protocol family and the protocol standard port and is used to create proper fake packets
in the data2pcap module. The fake packet is analysed by the tm_export module using Wireshark
dissection libraries and the result is then translated into Python structures. But it is not fully
prepared to be used in the fuzzing yet.

The first thing is that the values of the elements are encoded into a hex-format. The reason for
that is that otherwise they could contain a ‘\0’character, which would cause, that the values would

17

HotFuzz Developer’s guide

become shortened in the process of the structures translation. The values need to be therefore
decoded at this point. Another thing is that during the dissection process, some not important bytes
of the supplied data might be skipped, which makes it impossible to accurately reconstruct the
original message. These missing data need to be filled back in at the correct positions.

The structures need to be translated into proper Peach structures next. A deep understanding of
these structures was necessary when implementing this part, because some of them have different
behaviour than the others. Unfortunately, it is not possible to fully rely on the data types identified
during the dissection process. For example a value of a “Content-length” header is a string that
contains also a number, but the whole value is identified as a number. Though this might make
sense in some context (like in the Wireshark GUI), it is not desired when creating the Peach
structures. The data types need to be corrected at this point.

As the last thing we apply something that we call heuristics. Two heuristics are currently
implemented. The first one is a string tokenization. The values of the elements that were identified
as strings are tokenized based on a defined set of separators. It works simultaneously in two ways:

• Separation by brackets: works recursively and searches for specific types of brackets in the
string

• Separation by single tokens: goes through the string, looks for specific characters and
separates the string in places where these characters are found

The reason for this heuristic is that for example the URL from a HTTP request comes from the
dissection process as a single string element. To be able to mutate parts of this element, like the
URL parameters, it needs to be split into smaller parts.

The second heuristic searches for relations between different elements in the structure. Currently
it searches only for size relations. It identifies that a value of one element is a size of another
element. Later, during the process of fuzzing, if the value of the second element is mutated and its
size is changed, the value of the first element is accordingly modified as well to make the data look
authentic.

As a result we finally get a fully qualified Peach Data Model and we create a Peach Action that
contains this Data Model. In HotFuzz we use Peach Actions and Peach States only as packages for
our data.

Recording/Fuzzing

If we run in a recording mode, the Action is stored and the data are forwarded unchanged. If we
run in a fuzzing mode, then the Data Matching module is requested to find a matching Action
among the previously recorded data. If the matching Action is found, then its configuration is
copied and a mutation is performed on the Data Model of the current Action. Otherwise the data are
forwarded unchanged.

The mutation is performed by the HotFuzz Mutation Strategy. The strategy identifies mutable
elements and randomly selects a subset of them. It then identifies the Peach Mutators that are
applicable to the elements in the subset, randomly chooses one Mutator for each element and
performs the mutation. It is possible to provide the strategy with a seed to make it behave as
pseudo-random.

After the mutation, the values in the Data Model are concatenated into a single string and sent
instead of the originally received data.

18

HotFuzz Developer’s guide

Finishing the Iteration

When the proxy has no more messages to send, it switches back to the reading phase. The proxy
switches between the reading and the sending phase until one of the following events occurs:

• The proxy has no messages to send and no data were received in a number of seconds
specified by the user as an Iteration timeout.

• The Data matching module identifies the end of the iteration. This occurs only in the
fuzzing phase.

The end of the iteration can be identified using one of three methods (which one is used is
decided in the Data Aggregation process during the recording phase):

• Finish when the Data Model of the recorded Action with the flag terminateTestCase is
matched

• Finish when the server closes connection
• Finish when a count of the output actions reaches the count of the recorded output actions

and the count of the input actions reaches the count of the recorded input actions

When the iteration is ended, the connections are closed and a partial clean up is performed. If we
run in a recording mode and the number of the current iteration reaches the number of iterations to
be recorded, the Data Aggregation is requested to aggregate the recorded data and the result is used
to create a configuration file for the fuzzing phase.

Monitoring the Applications

During the process Pitm interacts with two Peach Agents – one for the client application and one
for the server application. The Agents are the same as the original Peach Agents, but the monitors
are different. HotFuzz implements two custom monitors for controlling the applications and
reporting faults.

• HotFuzz Process Monitor: Custom HotFuzz monitor for handling basic process
manipulation. Compared to the original Peach process monitor it can handle much more
complicated processes by using Windows Jobs. This monitor does not report any
information about the detected crashes. The motivation for writing this monitor was Mozilla
Firefox, which could not be handled by the original Peach process monitor.

• HotFuzz Debug Monitor: Customized version of the Peach debug monitor. It was modified
to provide the functionality required by HotFuzz. This monitor uses the Windows Debug
Engine to report information about the detected crashes. When a monitored application
crashes, the event is identified and reported by the HotFuzz Debug Monitor as a fault and
WinDbg dump is sent to Pitm, which logs the file together with messages that were sent
during the current iteration

Both monitors implement the following features that are typical for HotFuzz:
• Activation command – It is possible to run the client application persistently and specify a

command that causes the application to make a request.
• Running on port – It is possible to specify a port that is opened by the application when it

starts. This is useful when the application takes long to start. The Pitm process is deferred
until the port is opened (but for the maximum of 10 seconds). This is especially useful for
the UDP version of the proxy.

• Detecting CLOSE_WAIT ports – we have observed that the CesarFTP application tends to

19

HotFuzz Developer’s guide

get stuck after it receives a certain number of requests containing the ‘\0’ character. This
character is a very common part of the values generated by the Peach Mutators. The
application stops accepting any connections, so it is not possible to effectively continue in
the fuzzing process. We were not able to figure out the exact cause, but we found out that
the event went hand in hand with an increased number of ports in a CLOSE_WAIT state. We
based our heuristic upon this observation and whenever the number of CLOSE_WAIT ports
increases and the server port is among them, it is reported as a fault and the scenario is
restarted, so the fuzzing process can continue. Unfortunately we are not currently able to
provide any information about the fault as it is not considered to be a crash.

The ‘\0’ character seams to be hard to handle in general. For example when BadBlue application
receives a request containing this character, it does not reply in any way. The communication does
not continue and it is not possible to effectively identify the end of the iteration (only by the
timeout).

The second and the third described feature both use something that we called Netstat based port
scanner. The component does not try to connect to any ports, but uses Windows API to retrieve
various information about currently opened ports on the local machine.

Proxy – UDP Version

The UDP version of the proxy runs the same HotFuzz Actions (for recording and for fuzzing) as
the TCP version, but the proxy itself naturally works slightly different. It receives and sends data
without establishing any connections. It activates the client only after it binds the socket and
switches between reading and sending phase just like the TCP version. But there is no guaranteed
way how to make sure that the server application is already running and ready to receive data. The
Running on port feature of the server monitor therefore plays an important role here.

Pitm Files Overview

• peach.py – Contains all the necessary initializations before starting the main Engine. These
initializations include checks whether the necessary dependencies are installed, command
line options parsing etc. HotFuzz adds a couple of new command line options and does
some initialization of its own.

• Peach/Engine/state.py – Contains Peach methods for managing the Peach State Machine
and its actions. Method StateEngine._runState() was modified so that when specific
variables are set, the HotFuzz code is executed instead of the standard Peach code.

• Peach/Engine/ppaction.py – Contains the HotFuzz Proxy Engine.
• Peach/Agent/ppprocess.py – Contains the HotFuzz Process Monitor.
• Peach/Agent/ppmonitor.py – Contains the HotFuzz Debug Monitor.
• Peach/Analyzers/pptokenizer.py – Contains methods for string tokenization and methods for

creation of Peach structures.
• Peach/Analyzers/pprelations.py – Contains methods for finding relations among different

elements in a Data Model.
• Peach/Publishers/pppublisher.py – Contains a class for storing values that are important for

the communication with the client and the server.
• Peach/MutateStrategies/ppstrategies.py – Contains HotFuzz Mutation Strategies.
• Peach/Engine/ppGuiCommunicator.py – Contains the logic for receiving instructions from

20

HotFuzz Developer’s guide

the Graphical User Interface and sending back the information about the current state of the
Pitm process.

3.2 Data Analysis
Data analysis is one of the core components of HotFuzz. It is used to analyse the data passing

through HotFuzz. The input to the data analysis process are the data coming from the client
application to the server application and in the other direction too. The output of the data analysis
process is a datamodel—a tree-like structure where every node represents a part of data with
specific meaning and a descriptive name (where possible).

The overall architecture of the whole data analysis process can be seen in the following picture.

As we can see, the data analysis process consists of three tightly connected but separable phases.
In the first phase, the raw data in a form of a byte stream are converted to fake packets, wrapping
them up using appropriate artificially generated headers. These fake packets are used as an input for
the packet dissection process in the second phase. In the third phase, the output from the dissection
process is converted from C structures into Python objects.

Because these phases are separable, we decided to create a module for each of them, creating a
typical modular architecture for the whole data analysis process. This decision offers future
developers the possibility to use their own modules for the mentioned separated phases thus making
the development process easier.

It might look a bit extraordinary to create fake packets even though we only want to analyse the
raw data and to create at first C structures which then need to be converted to Python structures etc.
We know it might look confusing but trust us that these decisions were taken after thorough
investigation of the possibilities of how to implement the data analysis process. It will be better
explained in the description of the individual modules.

Lets have a closer look at each of the data analysis modules now.

21

Figure 3.3: Data analysis

HotFuzz Developer’s guide

Data2pcap Module

Data2pcap is a Python module that provides the functionality of creating fake packets from raw
data and saving them in a pcap format. Fake packets are formed from the raw data wrapped up in
artificial headers so that the data can be used as an input for programs which expect packets on their
inputs. These packets are well-formed, meaning that they have valid checksums and are zero-
padded when needed. Current version of this module provides support for UDP and TCP on the
transport layer, IP on the internet layer and Ethernet on the link layer, but can be easily extended.

We have decided to create this module because of two main reasons—one is that our data
dissection module is based upon Wireshark libraries (more details about the dissection module can
be found in the following section)–and the second reason is that we wanted to be able to store the
communication going through HotFuzz in an easy-readable format. Pcap showed to be a very good
choice for this.

Data2pcap in HotFuzz

The data2pcap module takes place in the early phase of data processing in HotFuzz. Hotfuzz
reads the data from a socket and right after the data are read, the data2pcap module is used to wrap
them up in fake packets and store these packets to communication log files (if the logs are enabled).
This situation is illustrated in the next picture.

The concrete source code of HotFuzz using the data2pcap module is to be found in
HOTFUZZDIR/Peach/Engine/ppaction.py. To better understand the usage of the data2pcap module
we recommend you to read the next section of this documentation.

22

Figure 3.4: data2pcap in HotFuzz

HotFuzz Developer’s guide

Data2pcap Usage

The data2pcap module was written with the emphasis on simplicity of use combined with the
possibility to set all important parameters of the created packets. If you want to use the data2pcap
module you need to use Python version 2.5 and to know only a few basic functions. These are:

• merge_headers_and_data(raw_data, protocol, src_ip, src_port, dst_ip,
dst_port, seq=1000, ack=100)

• save_pcap_packet_to_pcap_file(data, pcap_file)

and if you want to create TCP packets with valid sequence and acknowledgement numbers then
also

• update_tcp_control_length(mlen, old_tcp_ctrl)

With these functions you will be able to create fake UDP and TCP packets from raw data and
save them to a pcap file. Even though we provide a full Doxygen documentation for this module
that contains enough information to be able to work with the data2pcap module, we have written a
few short examples to make the work with the module easier for you.

How to Create a Fake UDP Packet and Save it to a Pcap File

Suppose we have raw data in a bytestring called raw_data and want to create a fake UDP. The
bytestring can be either read from a socket or constructed from any Python string using hexlify or
you can use whatever magic you need to get it. We want to create a UDP packet coming from the IP
address 1.1.1.1 port 50 to the IP address 2.2.2.2 port 60. We want to save the packet to a log file
called log.pcap in the current directory. The following few lines are all we need to use:

create a UDP packet with specified parameters
mydata = merge_headers_and_data(raw_data, 'udp', '1.1.1.1', '50',
'2.2.2.2', '60')
create a new file and write the created packet to it
outfile = file('log.pcap','wb')
save_pcap_packet_to_pcap_file(mydata, outfile)
outfile.close()

And that is it. You can try it and open the log.pcap file in any packet analyser to see the result
which should be well-formed UDP packet with all parameters set up according to the specification.

If you want to simulate an UDP communication containing more packets, you can do it easily.
You just have to use a loop. Move the file opening and file closing operations outside the loop and
the data reading operation into the loop condition, leaving merge_headers_and_data and
save_pcap_packet_to_pcap_file inside the loop and everything should work like a charm.

How to Create a TCP Packet and Save it to a Pcap File

This is very similar to creation of a UDP packet with one notable difference. The TCP
communication contains sequence and acknowledgement numbers. If you want to create only one
packet, you do not have to care about these and you can use the example presented for UDP with
the simple change of “udp” to “tcp” in the call of the merge_headers_and_data function. You do

23

HotFuzz Developer’s guide

not need to update the sequence and the acknowledgement numbers, since we defined default
values for them in the above mentioned function.

But if you want to simulate a communication flow between two sides containing more packets
exchanged in both ways the situation becomes a bit more complicated. For more details read the
“Create a TCP Connection” part.

Create a TCP Connection

It is a little tricky to simulate a TCP connection. It is necessary to keep the acknowledgement and
sequential numbers for each packet from within the same connection updating correctly. We were
aware of this behaviour and so we added support for computing right sequence and
acknowledgement numbers for TCP packets. However, to keep things simple the resulting
mechanism might seem a bit confusing. We will not go into details of SEQ/ACK arithmetic in here,
if you are interested in it please consult http://packetlife.net/blog/2010/jun/7/understanding-tcp-
sequence-acknowledgment-numbers/ which is a very good description of the subject.

The fact is that to simulate a TCP communication between A and B you need two integers. The
first will serve as a sequence number for A and also as an acknowledgement number for B, the
second will serve as a sequence number for B and consecutively as an acknowledgement number
for A. To keep the numbers right you have to call the update_tcp_control_length() function
on the first number every time A sends data to B and use the same function on the second number
every time B sends data to A. Also it is recommended to initialize these numbers randomly at the
start of the communication. Initialization to 1 might lead to problems when there are any segmented
data at the beginning of the communication.

We know that the description might be confusing (even though we tried it to be as clear as
possible) so we provide a simple example.

sequence number of A, acknowledgement number of B
seqA = 5000
sequence number of B, acknowledgement number of A
seqB = 3000
A sends data to B, data are captured and transformed into a fake TCP
packet
mydata = merge_headers_and_data(raw_data, 'udp', '1.1.1.1', '50',
'2.2.2.2', '60', seqA, seqB)
seqA is updated
seqA = update_tcp_control_length(len(raw_data), seqA)
any processing necessary happens here, new data from B arrives
B sends data to A (reply to the previous data from A)
mydata = merge_headers_and_data(raw_data, 'udp', '2.2.2.2', '60',
'1.1.1.1', '50', seqB, seqA)
seqB is updated
seqB = update_tcp_control_length(len(raw_data), seqB)
any processing necessary happens here, new data from A arrives
A sends data to B (reply to the previous data from B)
mydata = merge_headers_and_data(raw_data, 'udp', '1.1.1.1', '50',
'2.2.2.2', '60', seqA, seqB)
seqA is updated
seqA = update_tcp_control_length(len(raw_data), seqA)
…

24

http://packetlife.net/blog/2010/jun/7/understanding-tcp-sequence-acknowledgment-numbers/
http://packetlife.net/blog/2010/jun/7/understanding-tcp-sequence-acknowledgment-numbers/

HotFuzz Developer’s guide

This way you can simulate a TCP communication which will be correct. You can check this by
using a packet analyser, it should not object against the sequence or acknowledgement numbers and
should line up the packets appropriately.

Modification and Extension of Data2pcap

Let us first note that data2pcap is open and available for any type of modification you might
need to do. In fact we will be glad if you will reuse it in your own work and if it can spare you some
developing time.

The current version of data2pcap supports only creation of fake UDP and TCP packets over IP
over Ethernet. This is because we needed only these types of packets for HotFuzz and we did not
need to use any other types. However, we knew that someone might need to create other types of
packets too and so we have written data2pcap module to be easily extensible.

Every fake packet creation is composed of calls to create_XXX_hdr() functions where XXX
stands for the desired protocol type. A TCP packet is created by create_eth_hdr(),
create_ip_hdr() and create_tcp_hdr() in this order. A pcap wrapper enabling the packet to
be written to a pcap file is created by calls to create_pcap_global_hdr(),
create_pcap_pckt_hdr() and then the function to construct the desired packet type. This
approach leaves you an easy way of modification—if you for example need to simulate a token ring
instead of Ethernet you can write a new function create_tr_hdr() and call it instead of
create_eth_hdr(). And that is it.

We have also prepared some functions for manipulation with hexadecimal data in Python. These
functions can be found in the first part of the data2pcap source. The checksum function computing
a one-complement binary number used in many headers is also prepared for you to use if necessary.

Module tm_export

Introduction

The tm_export module was written in C and provides the packet dissection functionality. It is
based mainly upon the Wireshark libraries. In short, we can say that it is a wrapper around the
Wireshark core dissection process that takes a bytearray containing a packet on the input and
produces a tree-like structure derived from the results of the dissection process on the output.
Because we needed to slightly change some of the Wireshark sources in order to make tm_export
work we recommend you to read the “Technical issues” part if you want to reuse or modify this
module.

Note that due to the fact that the tm_export module was created in a form of a dynamically linked
library there are almost no restrictions on the programming language in which you create your
application that will use this module. The only thing is that you must be able to load the library. For
this purpose we have used the ctypes module to generate a wrapper for Python but you are
absolutely free in this decision.

Technical Issues

The tm_export module is based upon the developer version of Wireshark 1.3.5, revision 32446.
Because Wireshark is evolving quite fast and it is not extraordinary that a big portion of the code is
altered to better suite the new approach taken by its developers it is very important to use exactly

25

HotFuzz Developer’s guide

this revision if you ever need to recompile the tm_export module. If you cannot, for any reason, use
this revision, we highly recommend you to check the versions of individual headers that have been
changed in the tm_export source code against the version of these headers in the revision you want
to use. If these revisions differ then the compatibility might be broken and even though you might
be able to recompile the module, the result might not work right.

Also there is a known issue with the tm_export module when another version of Wireshark is
already installed on the machine where you want to use this module. This situation might produce a
tricky error when everything seems to be just fine until you try to actually call any function from
within the tm_export module. That leads to a Windows pop-up message saying something like “The
libwsutil.dll library cannot be loaded. You may fix this by reinstalling the conflicting program.”
This error has nothing to do with the libwsutil library at all. The problem is in the load-chain of the
libraries. The tm_export module depends on the libwireshark.dll library which depends on a dozen
of other libraries. The problem is that one of those libraries tries to load Wireshark plug-ins from the
directory path which it finds in the registry and since tm_export does not write anything to the
registry, it takes path to the plug-ins of the installed version of Wireshark. Since the plug-ins are
usually incompatible with the version of Wireshark libraries used by the tm_export module, an error
occurs. There is a way how to solve this problem “manually”, one just needs to change the directory
where the plug-ins are stored. For more information about this see section “Troubleshooting: How
to keep Wireshark installed” in the installation manual. Other solution might be to change the path
in the registry but it did not work for us when we tried it. If you have time and will, you surely can
look further into this and we will be very glad if you provide us with a better solution.

Usage

The tm_export module was designed to be as easy-to-use as possible. You just provide the data in
a bytearray, the module checks whether it looks like a valid packet and if so, it calls the Wireshark
dissection core. This approach was fine for us since we just needed the packet to be dissected if the
dissection core can do it and an indication of failure otherwise. If you need to control the dissection
process anyhow, you might try to modify the tm_export module on your own (see the section
Modification and extension of tm_export) but we recommend you to write to the Wireshark
developer forum for some hints at first since adapting the Wireshark code is one of a hard cakes to
bite.

To be able to use the tm_export module, you basically need the functions available in the
tm_export.h file. We will skip their detailed description since you can find it in the generated
Doxygen documentation or in the source code itself and we will have a look at the input and output
structures and at a simple example of one packet dissection.

Example Usage

As we mentioned earlier, there are just a few functions you need to use when you want to use the
tm_export module. You have to initialize global dissection structures and memory for them at the
very beginning. Then you have to initialize local dissection structures for every individual
communication (well, you does not have to, you can use the same local dissection structures for
different communications but it is a bit memory-consuming then). Then you call the dissection
process itself and use the output as you need. After you do not need the output any more you should
free the memory that was allocated for it. When you are finished with dissection you call the
cleanup functions for local and global dissection structures and that is all.

And how does it look in the pseudocode?

26

HotFuzz Developer’s guide

initialize global dissection structures
hf_dissect_init()
initialize local dissection structures
hf_one_iteration_init()
do the dissection(0 stands for the NODEBUG mode)
result = hf_dissect_one_packet(data,0)
now do some result processing you want to do
free the structures of the dissected packet
hf_free_datamodel(result)
free the local dissection structures
hf_one_iteration_cleanup()
free the global dissection structures
hf_dissect_cleanup()

Input/Output Structures

There are only two functions that expect an input from you. The first is the
hf_dissect_one_packet() function that calls the dissection of the data you provide it with. The
second is the hf_free_datamodel() function that expects to be called on the input of the first
function after you no longer need it. Therefore you just need to understand what to provide to the
hf_dissect_one_packet() function and what it returns you.

The input should be a bytearray containing a valid packet. You can use the wrapper generated
around raw data using merge_headers_and_data() function from the data2pcap module or
construct it using other ways. For an example of such input you may use the data2pcap module.
Using C conventions, the input is defined as

unsigned char * in_data;

The output is a tree structure constructed from nodes with individual meaning. Every node has
the same structure which can be seen in the Doxymentation to the hf_mynode struct or in the
tm_export.h source file. A visualisation of the tree structure resulting from a simple HTTP packet
dissection is in the following picture.

27

HotFuzz Developer’s guide

Modification and Extension of tm_export

If you would like to extend or modify the tm_export module on your own, we encourage you to
do so and because we have gone through some nasty surprises during its creation we offer you some
advice to the beginning.

At first, you should use Windows and Visual Studio for development. We have created the
tm_export project in it and it will save you some time. We are sure that if you need to port this to
Linux, it should work since Wireshark is portable and hopefully we did not made any Windows-
specific code too but we cannot guarantee it.

Also make sure that you have Wireshark sources for version 1.3.5 and revision 32446. If you
have another version of sources and do not want to change, you may try your luck but in that case
you have to go through all the header files in the tm_export header source directory and check their
revisions against the revisions of the same headers in the Wireshark source. If they differ you will
have to find the difference and check whether it is vital for the functionality you need or not. We
would not advise you to try this approach but if you really need to, we wish you luck.

Essential for the tm_export module are the Wireshark libraries. Therefore you have to learn how
to compile Wireshark from sources. We can recommend you a very good manual how to do this
under Windows using nmake (and supposedly it will go similar way, maybe easier, using make
under Unix). The manual is available at:

 http://www.wireshark.org/docs/wsdg_html_chunked/ChSetupWin32.html

Unfortunately, this page is quite often down and therefore we decided to attach it to this
documentation. It can is enclosed in the wireshark_winsetup.html file.

For better understanding of the tm_export module source code we tried to document it as much as
possible using Doxygen and in-source comments. We hope that these will help you understand the
process and find the place where you want to make changes to. A short summary of the process of
the tm_export module job:

28

Figure 3.5: Dissection of a sample HTTP request packet

http://www.wireshark.org/docs/wsdg_html_chunked/ChSetupWin32.html

HotFuzz Developer’s guide

• read the input bytearray

• check the pcap global and local headers for validity and strip them off

• prepare Wireshark dissection structures and variables

• do the dissection process

• check the sanity of the output from the dissection

• translate the output of the dissection process into a tree structure

• cleanup the dissection structures and variables

• return the output in a form of a tree structure

If you have any troubles during your modification work, feel free to contact us if it will be about
the tm_export code or use Wireshark developer forum to find answers to questions about the
behaviour of Wireshark libraries.

Calling Wireshark Code from Python

The Wireshark analyser is written in C and the Peach fuzzing framework is written in Python.
This was quite a problem, since we wanted to use some particular parts of Wireshark inside Peach
and we did not want to slow down the fuzzing process (e.g. by starting a new process during each
iteration).

Fortunately, Python contains the ctypes module which allows Python scripts to call C functions
from shared libraries (*.so, *.dll). So after we created the shared library, we were able to use the
ctypes module to call a particular C function in our Python code. Unfortunately, using the ctypes
module was not so easy. So we decided to use a program called ctypesgen. It generates a code,
which wraps all necessary C functions and structures (from a single header file) into a valid Python
script file using the ctypes module.

This was quite beneficial, because whenever we made a change in the API of the shared library,
we were able to generate a corresponding Python code with no extra effort.

Converting Wireshark Structures into Peach Structures

The communication between Peach and the Wireshark analyser proceeds as follows. Peach sends
the entire message as a parameter of a C function and receives a pointer to a C tree structure
representing one Wireshark datamodel. This tree is not well suited for a further usage, so it is
necessary to perform some conversion actions. The conversion changes the structure of the tree
from the pointer linked structures (C approach) to array linked structures (Python approach). It also
remaps the Wireshark types into the Peach types. The incoming C structures have more or less the
same layout as the outgoing Python structures.

29

HotFuzz Developer’s guide

3.3 Data Matching
One of the main tasks of HotFuzz during fuzzing process is to locate the mutable elements in the

data coming from the source application so they can be then altered before they are forwarded to the
destination application. This means to compare the currently processed data to the previously
recorded data models, to choose the model which fits the data and mark mutable elements based on
the model. If the data would never change from the one run of the test scenario to another, a simple
solution would be to compare the bit or string representation of the data and every known model.
But since the network communication can contain variable items (like counters or timestamps) a
smarter approach is necessary. So HotFuzz searches for the best matching data model to the given
message. The comparison is performed on the already analysed data, which are split to protocol
elements and organized in tree structures. Then the similarity is measured by comparing different
aspects of these structures.

The information about the data is stored in a variable of the Peach type Action. E.g. it indicates
the direction in which the data are forwarded. That makes possible to distinguish the requests sent
from the client to the server from the responses sent from the server to the client, so only if the
direction of the currently processed message matches the direction of the data model, they are
compared.

The communication is dissected into a tree-like structure. This structure is then taken into
account in the next step of matching. These trees (for both the message and the model) are traversed
simultaneously in the depth first search and every node is checked whether the following properties
match: the number of children (structure of the tree), element name assigned by the dissector for the
node (the type of the message field from the viewpoint of the protocol) and the node value type (the
type of the value carried in the message field). It is expected that for the similar messages, all the
properties have the same value. These properties are checked and if some of them does not match,
the model is pronounced as not similar to the message and the process starts again with another
candidate model from the set of the recorded models.

If the basic properties fit, additional attributes of the same substructure are compared: the value
of the nodes (content of the message field) and the value length (checked only for the string typed
nodes). These attributes do not have to match in all nodes of the tree. They are used to pick the most
suitable model for the message (among the suitable models). For each match with the message, the
model receives a number of points. Full points for the value match and half points for the value
length match. At the end of the comparison, all the points are summed up, representing the score of
the model (the models that do not fit in the basic properties have the score of zero). The score is
computed for all the compatible models and the program keeps a reference to the model with the

30

Figure 3.6: Wireshark C structures converted into Peach Python structures

HotFuzz Developer’s guide

currently highest score. At the end of the process, the most successful model is used to mark
mutable fields of the message.

Due to many possible ways how the models can differ (caused by a wide range of protocols and
their messages), there were many solutions considered for this task. The main concern is to find a
reasonable compromise between choosing a model which in fact does not belong to the message
(too loose comparison) and not identifying a model which in fact does belong to the message (too
strict comparison). We started with a simple test of the isomorphism between the communication
trees, which proved to work as a basic requirement and later we developed a several ideas for the
finer selection, including the construction of sets of tree operations needed to transform a model to a
given message. However, this approach appeared to be very difficult to implement in an early stage
of its development. Therefore we started to experiment with the scoring function which could be
implemented much faster and its basic idea fits the needed selection well. The testing on different
protocols showed that the function gives satisfying results. In the most cases it chooses the model
which really belongs to the message, thus we adopted it as the final solution. The disadvantage of
the function is that it requires a rather complex modular design for the individual tests so they can
be used separately and in the convenient way. This however causes that the same trees have to be
traversed multiple times, making data matching slower.

3.4 Recorded Data Aggregation
The purpose of the recorded data aggregation is to merge the data models produced in the

multiple test cases of the recording process. The merging is meant to make the resulting models
smaller, more efficient and easier to use. For extensive communication like HTTP, one test case can
easily produce data models of a size of megabytes (which is needed to be edited and processed), so
with more test cases the aggregation has significant impact. The main aim of the aggregation is to
eliminate all possible duplicities of the messages that are already a part of the cumulative data
model set. At the beginning the set contains unchanged data models of the first test case. Then the
models from the following test cases are included only if they are distinct from all the models,
which are already in.

The decision about the duplicities and differences is based on the very same scoring function that
is used for the data matching (for detailed description of the function, see the Data matching
chapter). This is apparent and natural as multiple runs of recording can be, in terms of data model
similarity, viewed the same as multiple runs of a fuzzing. If a given message would be matched
with a given model during the fuzzing anyway, it makes sense to merge the message into the model
right away.

Yet, some Actions have to be treated in a special way. These are the Actions that do not contain
any data (one form of the terminating Action) or have the terminateTestCase flag set (another form
of the terminating Action). More precisely, this is a problem how to aggregate an Action that will let
HotFuzz know that the current test case should be finished. As soon as such Action is detected, the
proxy terminates the test case and does not forward data any more. It is clear that only one
terminating Action should be in the resulting data model, which is not always the case, particularly
when the multiple test cases are considered. Thus, to achieve this, before searching for the
similarities aggregation, the program looks for the number and the position of the close Actions.
The close Action is triggered when the client closes the connection to the server so there should be
one close Action at the very end of every recorded test case. If this holds, the close Action is also
included in the aggregated data model in the same manner. If not, the client does not close the
connection itself and it should be checked whether a test case can be terminated by a data action
instead. This is possible if in the each case of communication is the very same last data Action,

31

HotFuzz Developer’s guide

again decided by data matching. In this case, the terminateTestCase flag is set for the last action in
the aggregated data model.

3.5 Structure of the HotFuzz Configuration File
The XML Schema in the Appendix A describes the structure of the HotFuzz configuration file.

The HotFuzz configuration files are in many aspects similar to Peach configuration files. The
reason for that is that we wanted to minimize changes to Peach configuration file parser, which is
fortunately written in a very flexible way, so we were able to insert additional information into our
configuration files without needing to write a parser of our own. One of the results is that it is
possible to include some of the Peach features, like Peach monitors, and use them to enhance the
HotFuzz functionality. However full compatibility can not be guaranteed and a description of the
Peach features that can be used along with HotFuzz is beyond the scope of this XML Schema.

32

HotFuzz Developer’s guide

4 GUI

The main purpose of the GUI application is to simplify the use of the Peach fuzzing framework
back-end.

It does not provide any extra fuzzing related functions and all its functionality can be achieved by
using the standard console Pitm application. Moreover the GUI application does not cover every
fuzzing configuration, which can be set using the Peach fuzzing framework. It just covers a
reasonable subset of its functionality related to the HotFuzz project. GUI is distributed under the
same license as the Peach fuzzing framework, so feel free to extend and modify its features.

Source Code Generation

The Qt Designer does not directly generate Python source files. It generates ui files. (These files
use an XML format to represent form elements and their characteristics.) PyQt4 provides with the
pyuic4 utility, which is capable of converting the ui files to the Python source files. There is also one
resource file (GUI/images/resource.qrc) containing informations about the images used, which has
to be compiled using the pyrcc4 utility.

To automate these actions use the Python script file GUI/build.py or use the make command
inside the GUI/ directory.

Main Functions Overview

• Providing a dialog logic (Dialogs)
• Starting fuzzing and recording external processes (Main window dialog, programs)
• Manipulating with fuzzing and recording XMLs (Main window dialog, XML manipulation)
• Viewing crashes (Main window dialog, Action view dialog, Dump files)
• Keeping application settings (Application settings, Main window dialog)
• The project management (projects Project Files, Intro dialog)
• Providing undo/redo actions (Undo Actions, Main window dialog)

Application File Overview

• GUI/udpcommunicator.py – Classes used for the communication with Pitm
• GUI/xmlmanipulators.py – Classes used for the XML processing (loading and storing)
• GUI/actionview.py – A logic of the Action View dialog
• GUI/dumpreader.py – Classes used to process the crash informations
• GUI/globals.py – Global definitions
• GUI/hotfuzzplugin.py – Plugins for Qt designer
• GUI/hotfuzzwidget.py – Specially modified widgets (for Qt designer and main window)
• GUI/intro.py – A logic of the Intro Dialog
• GUI/mutators.py – A class, which links the mutator widget with the element of the XML tree
• GUI/preferences.py – A logic of the Preferences Dialog
• GUI/project.py – A project class

33

HotFuzz Developer’s guide

• GUI/projectinfo.py – A logic of the Project Info Dialog
• GUI/projectnew.py – A logic of the Project New Dialog
• GUI/projectrecent.py – A logic of the Project Recent Dialog
• GUI/settings.py – Application settings
• GUI/shared.py – A file containing shared non-class functions
• GUI/testport.py – A class for testing whether the given port on the given host is accessible
• GUI/undoactions.py – Classes for performing GUI undo actions
• GUI/window.py – A logic of the Main Window Dialog
• GUI/schema/project.xsd – A schema for verification of project XML files
• GUI/images/ – A directory for images
• GUI/templates/ – A directory with templates for fuzzing and recording phases and a default

project XML
• GUI/ui/ – A directory containing ui files created in the Qt Designer

4.1 Dialogs

Basic Dialog Logic

The GUI application is started by executing hotfuzzGUI.pyw from the project root directory. It
initializes the Main Window, shows the splash screen and triggers the Intro Dialog. The purpose of
the Intro Dialog is to open a project. If the Intro Dialog exits without opening a project, the whole
application exits. The Intro Dialog can be opened only during a startup.

All other dialogs can be started from the Main Window Dialog.
After a new dialog is started, the Main window becomes inaccessible until the dialog is closed.

The Main Window becomes inaccessible after a new dialog is started. It becomes accessible again
after the dialog is closed.

Standard Qt Dialogs

We tried to use as many standard Qt dialogs as possible. Standard Qt dialogs are often
customized according to the current window manager of a particular operating system, thus all Qt
dialogs look like native system dialogs.

We use these dialogs to query for the path to existing/non-existing files/directories (Standard
open/save dialogs), for short error messages and for short confirmation messages.

Main Window Dialog

This dialog is the most important dialog of our application. It opens all other dialogs and
processes signals from numerous types of events. Moreover all external programs are started within
this dialog.

Its basic skeleton was created in the Qt designer (see GUI/ui/window.ui and GUI/ui_window.py)
and the main logic was added in GUI/window.py. It consists of 4 tabs, the Main Menu and the
Status Bar.

The first tab is responsible for editing recording XMLs and starting Pitm in a recording mode.
Note, that the most of its widgets start with a “recording” prefix.

34

HotFuzz Developer’s guide

The second tab is responsible for editing mutators and the “mutable” part inside the datamodel
element in fuzzing XMLs. It can also restore last recorded XML (“project dir”/recording-out).

The third tab is responsible for editing fuzzing XMLs and starting Pitm in a fuzzing mode. Note
that the most of its widgets start with a “fuzzing” prefix.

The fourth tab provides the user with a dump viewing functionality. It opens the Action View
Dialog (Action view dialog) and starts an external debugger program (probably windbg).

The Main Menu contains:
• standard save/open dialogs,
• import/export recoding/fuzzing XMLs dialogs,
• the Preferences Dialog,
• About dialog,
• the Project Info Dialog,
• undo/redo actions.

We did not want to bother users with annoying message boxes, so the Status Bar is used to
display all important messages.

The Main Window also stores informations about the currently opened project.

Application Settings

Whenever the Main Window is starting, it loads application settings and modifies its internal
variables according to these settings. Whenever the Main Window is closing, it prompts whether to
store unsaved changes to the project and then it stores its internal variables to the application
settings.

These settings are stored in an ini format to a system dependent location using the
reimplementation of the standard Qt QSettings class. In Windows, it is the file C:\Documents and
Settings\USERNAME\Application Data\HotFuzz\HotFuzz GUI.ini.

These settings can be restored to defaults or modified in the Preferences Dialog.

Intro Dialog

An introductory application dialog. This dialog is not started from the Main Window Dialog, but
from an application start wrapper (hotfuzzGUI.pyw). It can not be started from the Main Window.
When this dialog exits without opening valid project, it closes the main window thus causing
application to exit.

Its basic skeleton was created in the Qt Designer (see GUI/ui/intro.ui and GUI/ui_intro.py) and
the main logic was added in GUI/intro.py. It consist of three tabs.

The recent projects tab reads a list of recent projects provided by the Main Window Class and
displays some basic informations about these projects. The maximum count of the recent projects
can be set in the Preferences Dialog.

The new project tab reads project template XML files (GUI/templates/fuzzing/,
GUI/templates/recording/, GUI/templates/project/) and displays them in a fuzzing/recording
template list. After hitting the Create Button, Qt dialog is opened. A path to a new project can be
chosen there. Then these templates are copied to the new project directory. The project XML is
modified according to the editable project informations.

The open project tab browses a path to an existing project. If the project XML file is valid, an
info is shown and the project can be opened by the Open Button.

35

HotFuzz Developer’s guide

Preferences Dialog

This dialog is responsible for updating Main Window variables, which represent current
application settings. The application settings themselves is updated when the Main Window exits.
However, pressing the Restore Defaults Button causes that the application clears its settings, thus
restoring the state, which was present during the first start of the application.

Its basic skeleton was created in the Qt Designer (see GUI/ui/preferences.ui and
GUI/ui_preferences.py) and the main logic was added in GUI/preferences.py.

This dialog can be triggered only through the Main Menu or by pressing a corresponding
shortcut.

New Project Dialog

The New Project Dialog is very similar to the new project part of the Intro Dialog. The code is
more or less the same.

It reads project template XML files (GUI/templates/fuzzing/, GUI/templates/recording/,
GUI/templates/project/) and places them into a fuzzing/recording template list. After hitting the
Create button, a Qt dialog is opened. A path to a new project can be chosen there. Then these
templates are copied to the new project directory. The project XML is modified according to the
editable project informations.

Its basic skeleton was created in the Qt Designer (see GUI/ui/projectnew.ui and
GUI/ui_projectnew.py) and the main logic was added in GUI/projectnew.py.

This dialog can be triggered only through the Main Menu or by pressing a corresponding
shortcut.

Recent Project Dialog

The Recent Project Dialog is very similar to the recent project part of the intro dialog. The code
is more or less the same.

It reads a list of recent projects provided by the Main Window Class and displays some basic
informations about these projects. The maximum count of the recent projects can be set in the
Preferences Dialog.

Its basic skeleton was created in the Qt designer (see GUI/ui/projectrecent.ui and
GUI/ui_projectrecent.py) and the main logic was added in GUI/projectrecent.py.

This dialog can be triggered only through the Main Menu or by pressing a corresponding
shortcut.

Project Info Dialog

This is a very simple dialog, which just modifies the informations about the currently opened
project. The project structure itself is the one of a Main Windows variables.

Its basic skeleton was created in the Qt Designer (see GUI/ui/projectinfo.ui and
GUI/ui_projectinfo.py) and the main logic was added in GUI/projectinfo.py.

This dialog can be triggered only through the Main Menu or by pressing a corresponding
shortcut.

36

HotFuzz Developer’s guide

Action View Dialog

The purpose of this dialog is to show users the communication between a server and a client
before the program crashed. It can open parts of the communication in an external text editor.

Its basic skeleton was created in the Qt Designer (see GUI/ui/actionview.ui and
GUI/ui_actionview.py) and the main logic was added in GUI/actionview.py.

This dialog can be triggered only through the dump tab of the Main Window.

4.2 Projects
An essential part of the GUI application is a project.
Project is a class used by the Main Window to keep some informations about the currently opened

project. The project contains a path to a directory where all necessary files are located (a.k.a. the
project directory). The project can be considered loaded when all of its files are successfully loaded
into the Main Window (project.xml, fuzzing.xml, recording.xml and the dump/ directory). The Main
Window has to have an opened project instance.

The project can be stored to a user-specified location. the user has to have necessary rights to
create the project directory in the specified location. the user has to have a read permission to a
project directory to load a project.

Project Files

The structure of the project directory is as following:

• recording.xml – A file used in the recording phase. (mandatory)
• recording-out.xml – An output file of the recording phase. If this file is successfully loaded

after the recording phase, it becomes a new fuzzing-orig.xml and fuzzing.xml. (optional)
• recording-edit.xml – A file edited by an external editor. If this file is successfully loaded after

the editor exits, it becomes a new recording.xml. (optional)
• fuzzing-orig.xml – An output of a successful recording phase or the original fuzzing XML

template. (mandatory)
• fuzzing.xml – A file used in the fuzzing phase. (mandatory)
• fuzzing-edit.xml – A file edited by an external editor. If this file is successfully loaded after the

editor exits, it becomes a new fuzzing.xml. (optional)
• project.xml – A file containing some project related informations. (mandatory)
• dump/ – A directory for storing sessions and crashes of the fuzzing phase. (mandatory, but can

be empty)

XML Manipulation

The GUI application is capable of manipulating (storing and loading) with three types of XML
files – fuzzing.xml, recording.xml and project.xml. The fuzzing and the recording XML are passed to
Pitm as one of its parameters. The project XML is used to store overall project informations. The
load operation always precedes the store operation.

The recoding.xml and the fuzzing.xml are files which are used by the external Pitm program, so
manipulating with these files is quite similar.

37

HotFuzz Developer’s guide

After a file is loaded, a new XML element tree is created. Then, some known elements of the tree
are used to update the corresponding GUI’s widgets.

Own Widgets and Undo Actions allow to perform undo/redo actions.
The fuzzing manipulator also modifies the XML’s mutator section. Each mutator element is

bound to the one of the check boxes in the second tab. Whenever one of these check boxes changes
its state, it triggers an immediate change of the fuzzing XML tree.

The fuzzing manipulator also modifies the datamodel XML tree elements. It sets the attribute
mutable to “true” or “false” inside particular tree elements. Every datamodel is also bound to the
one of the tree widget items. These items are created when the tree is loaded and placed in the
datamodel tree widget. Whenever one of these tree widget items changes its state, the fuzzing XML
tree is changed.

All other widgets change the XML element tree during the storing phase. The contents of the
whole XML element tree is stored into an XML file at the end of the storing phase.

A manipulation with a project.xml file is easier, because no XML tree is created during this
operation. All necessary elements are loaded into the project class instance of the Main Window.
The store function places the corresponding variables of the project class appropriately.

Dump Files

When Pitm is started in the fuzzing mode, a new directory in <project-directory>/dumps/ appears.
This directory is created by Pitm and the GUI application allows to examine its contents.

The directory contains a file with informations about the fuzzing session named status.txt.
There are also some informations about each individual crash within the one of its many

subdirectories:

• ServerAgent_StackTrace.txt – A file containing some useful information about the crash.
• ServerAgent_Dump.dmp – A dump file which can be opened in a debugger.
• data_*.txt – Files which contain a communication sequence that caused the crash.

GUI tries to visualize these informations as well as possible (in the Action view dialog and the
Main window dialog). GUI loads contents of the whole dump directory whenever the user stops the
fuzzing phase or whenever the Refresh button is pressed. The user can see the current contents of
the directory even when the fuzzing phase is still running.

4.3 Widgets
GUI uses a various kinds of Qt widgets (e.g. Check Boxes, Labels, Tabs, Layouts, etc.)

Unfortunately, these widgets does not provide all the functionality we need. So it was necessary to
extend some of the existing widgets.

Own Widgets

GUI reimplements 4 types of the basic widgets: Check Box, Line Edit, Spin Box and Radio
Button. These classes were modified to override the default focusInEvent and focusOutEvent event
handlers. During the focusInEvent the class stores its original value to an internal class variable. The
original value is compared to the current widget value during focusOutEvent and when these values
differ, widget emits a signal containing the original value.

38

HotFuzz Developer’s guide

The Radio Button widget was modified more than the others. It was necessary to remember the
state of the whole group to which the Radio Button belongs.

GUI also reimplements the tree widget items of the datamodel tree widget. These widgets are
associated with a corresponding node of the fuzzing XML element tree. The change of the state of
the widget can be immediately reflected in the fuzzing XML tree thanks to this feature.

Some other tree widget items are reimplemented as well. These modification extends the original
class with additional informations (e.g. a path to dump file).

Qt Designer Plugin

Unfortunately, modified basic widgets can not be used in the Qt Designer, because the Qt
Designer is not aware of their existence. This was quite unpleasant, since these widgets form the
vast majority of widgets we use in the Main Window of the application.

So we created a new Qt Designer plugin for each widget. (See GUI/hotfuzzplugin.py). If you
want to use the Qt Designer, you need to force the Qt Designer to load plugins from a specific
location.

The easiest way to do this is to modify PYQTDESIGNERPATH environmental variable.
E.g. export PYQTDESIGNERPATH="path to hotfuzz root dir"/GUI/
Or you may just copy the plugin file into the standard Qt Designer plugin directory.
After the Qt designer is started, four new components should appear in the Widget Box:

• HotFuzzRadioButtonWidget,

• HotFuzzCheckBoxWidget,

• HotFuzzLineEditWidget and

• HotFuzzSpinBoxWidget.

Undo Actions

The main reason why we have to use modified basic widgets is to provide useful undo/redo
actions for the GUI application. The modified widgets generate signals, which are caught by the
Main Window class. As a reaction to these signals, a new undo action is created and placed on the
top of the active undo stack. There are 3 stacks, which are bound to a currently opened tab.

The undo/redo actions can be triggered through the Main Menu or by pressing a corresponding
shortcut.

Undo stacks are cleared whenever a new project or a corresponding part of the project is loaded.

4.4 External Programs
One of the main purposes of GUI is to manage the external Pitm program. The external Pitm

program has to carry out the recording and the fuzzing phases.
There are also other external programs, which are start from GUI—a text editor and a debugger.

Path to both programs can be set in the Preferences Dialog.
The Pitm proxy process and two Pitm agent processes can be started from GUI—an agent

process and a server process. The Agent process is a wrapper around client/server programs. It
listens on a specified port and is responsible for managing the application process. It is not
recommended to stop these processes during the fuzzing/recording phase. Sometimes it may happen

39

HotFuzz Developer’s guide

that these processes have to be killed manually. It is quite annoying, because these processes block
the ports on which they communicate.

The Pitm process represents the main fuzzing/recording process. Its parameters and life cycle are
quite complex. To provide some basic informations and to influence the process life cycle a special
UDP communicator was added into the Pitm and GUI. A special UDP communicator was added
into Pitm and GUI. GUI can query for some basic informations and influence the life cycle of the
Pitm process through the communicator.

Peach Communicator

Pitm is considered to be a server process. It listens on a specified port (defaults to 12559). GUI
connects to the Pitm process port in a separate thread.

A basic GUI requests are:
• Pause Peach – A GUI thread sends a pause signal, waits for the answer and changes the state

of the Pause button (udpcommunicator::communicatorPauseThread)
• UnPause Peach – A GUI thread sends an unpause signal, waits for the answer and changes

the state of the Pause button (udpcommunicator::communicatorUnPauseThread)
• Register iteration – A GUI thread sends a registration signal to Pitm. Pitm sends a packet

with a iteration number and a crash indicator at the beginning of each iteration.
(udpcommunicator::communicatorIterationThread)

• Kill Peach – A GUI thread sends this signal to force the Pitm process to quit. It does not wait
for a return value. GUI started the Pitm process and can find out when exactly the process
ended. (udpcommunicator::communicatorKillThread)

Starting Pitm

The Pitm starts from GUI using the Start button in the Pitm part of the fuzzing and recording tab.
GUI uses a lot of command line parameters (e.g. a communicator port, a debug level, etc.). The
most significant of those parameters is the path to the fuzzing or recording XML. GUI stores its
current state into the fuzzing or recording XML in the tmp directory before it starts Pitm. The path
to this XML is passed as a command line parameter (it is the most significant parameter on the
command line, because the XML contains all fuzzing/recording related things). The complete list of
the command line parameters is written to the Status Bar and into standard application output.

The dialogs also contain the Start All button. This button starts agents, waits until they start to
listen on the specified ports and then starts the Pitm program. A special class was designed to
perform the waiting operation. This waiting operation can be cancelled at any time by pressing the
Escape key.

Stopping Pitm

Stopping the Pitm process at any time might be a problem. The Pitm process has to stop the
client/server programs first. So GUI does not kill the Pitm process after hitting the Stop button. It
only sends a kill signal through the communicator. This operation might not be always successful
(e.g. when Pitm is not listening on the selected port yet). After the process stops, some cleaning
actions are performed.

This approach brings more problems to the Stop All button implementation. It has to terminate
Pitm first. After Pitm is successfully terminated, it can terminate both agents. So it sends a kill

40

HotFuzz Developer’s guide

signal to Pitm and then waits 10 seconds for Pitm to exit. If Pitm exits within the timeout, no harm
is done and both agents are correctly terminated. However, when the timeout occurs, it kills Pitm
instantly. This may cause that the client/server applications still occupy their ports.

41

HotFuzz Developer’s guide

5 Development of HotFuzz

5.1 History of the Project
This chapter describes the development process of the project core. The term core means the

functionality of a proxy that is able to capture and forward data; later, a packet dissection feature
and fuzzing have been incorporated into the proxy. The following text describes the main tasks of
the project in detail, explains the important features that have been implemented and some issues
that needed to be resolved. They are listed in the form of separate paragraphs in the order they came
up during the development process.

A lot of effort has been done to get familiar with Peach and its functionality. It was a challenge to
actually install it and run the examples that are shipped with it. Since that time (April 2009), the
installation of Peach has been changed (it is shipped as a compiled binary and a few bugs with its
dependencies have been fixed), thus the installation process is easier today. As beginning users of
Peach, we tried to alter some of the example configuration files to get familiar with it. There is a
documentation for Peach, but it is limited and sometimes out-of-date. The Peach mailing-list turned
out to be helpful, example configurations have been heavily used and the source code was studied
in order to understand the program behaviour.

The Peach source code can be quite complicated to understand because of its volume. To be able
to understand how it works, we wrote a minimalistic derivative of Peach, which provided the basic
functionality (without checking all exceptions or cases that we were not interested in) and we were
able to traverse and understand the code quickly. The Peach code itself is roughly commented.

Different team members were associated with different tasks, but almost all of them had to learn
Python and understand Peach. One of the development team members wrote a paper that explained
the Peach internals to the rest of the team members.

A proxy has been made that allowed client-server communication. This proxy was incorporated
into our minimalistic version of Peach. A decision had to be made, whether to continue using this
minimalistic version, or to transfer all new features back to the original Peach. The second option
won and it turned out to be good choice in the end. The main reason for using the original Peach
was higher compatibility of the source codes and that it would be easier to port changes made in
Peach into HotFuzz and vice versa.

While using real client and server programs with this proxy, we realised that the server needs to
be listening before the client program attempts to connect to it. This was not ensured at the
beginning and the result were missing data for recording or unnecessary timeouts and errors.
Currently, the client program attempts to initialize a connection after the port is open.

Another strategic decision was about the separation of the HotFuzz code—whether the Peach
code will be modified, or the changes will be kept in separate files. The latter option has been
chosen. Some changes in the Peach code have been necessary anyway, but we tried to keep them as
few as possible.

During this work, the part involving Data analysis was getting done and ready for use within the
proxy.

The first version of the proxy was not able to read data from the client side if it was expecting
data from the server side and vice versa. The proxy could be considered working only after using
the select() call and carefully mirroring the state of the sockets (i.e. if a server program shuts the
socket down for reading, it will be done on the listening interface, too).

42

HotFuzz Developer’s guide

It is appropriate to allow the user to choose which parts of the transferred data are to be mutated
and which are not. It was an important decision on how to achieve this. It seemed to be convenient
for the user if he had the opportunity to see a typical communication and to mark the parts that he
wants to mutate. Because a real client program and a real server program are used, there is no rule
that the communication will be exactly the same when the same scenario is repeated (e.g. a web
application generates a cookie with a session identification token that is pseudo-randomly
generated, which means, practically, always different). Moreover, the applications can get into a
state when they send some data that are different than the data sent at the beginning and shown to
the user. (We assume that showing every “new” data to the user and waiting for the configuration of
the mutable parts is not appropriate, since the fuzzing itself is expected to be an automated process
without a lot of human attention.)

The result is, that a recording is performed first, the resulting data models are marked with
mutable and immutable flags and the data, that are transferred during the fuzzing, are compared to
those marked data models. If the currently processed data matches one of the data models from the
configuration, mutable flags are applied and mutations are performed according to these flags.

Some parts were completely rewritten, like the proxy core, which code was growing with every
edge case that needed to be checked for.

The first success was crashing the CesarFTP server that suffers from buffer overflow in the
argument of the XMKD command. It was a proof that we are able to select only some parts of the
communication to be fuzzed. If the communication was fuzzed during the authentication
unintentionally, commands like XMKD could not be used.

The GUI became pretty much usable and almost all developers left the command-line and started
to use the GUI for running HotFuzz.

Support for UDP protocols has been implemented. This was tested on the BIND server and it was
functioning surprisingly well at the first run. Because the UDP protocol is much more simple than
the TCP protocol, the code is also more simple. But there is one caveat: It is difficult to detect, when
the connection is closed. If the server (or the client) sent all the data, the test case could be finished
and a new test case could be started, but the UDP proxy does not receives any information like the
TCP proxy does (e.g. packets flagged as FIN). Timeouts can be used, but this is very ineffective, as
successful fuzzing relies on performing as many test cases as possible within a given time amount.
There were solutions implemented to avoid unnecessary delays.

Some issues arise during the use of the BadBlue web server (shipped within the package), as this
scenario produces a more extensive amount of communication. There were issues to be solved like
that the dissected data returned by Wireshark did not contain all the data that were submitted into
dissection. All such errors that we are aware of are now fixed.

The last two months (July and August 2010) of the HotFuzz project development were mainly
about fixing errors and ensuring that the prepared projects are working.

5.2 Development of the Dissection Process in HotFuzz
At first, there was a need. A need to analyse the communication going through HotFuzz. The first

approach was to use Tshark, the commandline version of the Wireshark packet analyser, to capture
and analyse the traffic. This approach was soon abandoned since we needed to use sockets to
deliver data to and from HotFuzz and it was not possible to let Tshark capture the traffic on the
network interface since we would not be able to synchronize this “double delivery” process. (Note
that it is not possible to listen on a loopback interface on Windows.) We have decided to do a little
workaround and create fake packet headers around the data that come through a socket. There is a

43

HotFuzz Developer’s guide

tool for fake packet creation called text2pcap which is a part of Wireshark tools so this was not a
problem. The fake packets were then given to Tshark for analysis.

The solution was implemented and worked fine but there were two problems. The first was that
we needed to run Tshark over and over again, every time we needed to analyse some data. The
second was that we needed to do the same with the text2pcap tool. Controlling both Tshark and
text2pcap was quite costly in the means of time, synchronization and resources. We needed to get
rid of this overhead.

At first, we decided to left out text2pcap. After thorough analysis we found out that it should not
be a big problem to create our own fake packet creator. Because we did not need to support
different physical and link layer types since the fake headers were needed only to separate the flows
of communication and create fake packets necessary for Tshark input, we created a simple Python
module which we called data2pcap (more about this module can be found in the Data analysis
section). Data2pcap replaced the text2pcap tool completely and since it is a module providing
functions for the desired functionalities we were no longer forced to run an external application and
incorporated the module into HotFuzz.

The second to be left out was Tshark. We wanted to use only its core process used for dissection
and dismiss everything else. After the analysis of Tshark source code we found out that the
dissection process is available in the libraries that are created when compiling the whole Wireshark
project. Unfortunately, there was no dissection framework and so we needed to find and modify the
functions used in the dissection process.

The modification process was neither short nor easy. Because Tshark is able to capture and
analyse traffic on almost any type of physical and link layers used nowadays there was a lot of
polymorphic code designed for this multifunctionality and it was not easy to identify which part of
code is essential for the dissection process and which is not. We have chosen an approach of careful
slicing. We have identified the main part of the source code that was used when Tshark was reading
data from a file and was analysing them and we have sliced this code out of Tshark. After some
modifications we were able to use a module which we built upon this part of code to read traffic
data from a file and analyse them. The next step was to left out the reading operation and replace it
with a callable function which will get the data as an input.

This phase was probably the most complicated one because we chose not only to “hack” the
source code but also to create a usable framework for the dissection process. After many more or
less significant changes and some programming work we created a tm_export module (more about
this module can be found in the Data analysis section). This module is basically a wrapper around
the Wireshark libraries providing a few functions for easy access to the dissection process.

And that was it for us. The tm_export module was right the thing we needed since this way we
left out the external applications and finished our target—assimilation of the dissection process
without the need to run any external applications at all. We know that the module does not offer the
full functionality of Wireshark or Tshark but it still may be useful for someone that just needs the
bare dissection process without any additional sauce.

44

HotFuzz Developer’s guide

6 Strategic Decisions

6.1 Why Peach is Used
A major requirement when choosing a software to use as a part of the project is whether it is built

modularly and extendible. Peach fulfils this requirement, as the author allows and encourages the
users to write their own extensions.

The author of Peach came with the idea to implement the proxy feature and offered help to define
the scope of the project. This communication and the opportunity to get support while using Peach
were another reasons to choose Peach among other fuzzing frameworks.

Peach is also actively developed and the features can be ported from one project to another. It has
been kept in mind while managing the source code files, to allow these transfer of features from one
project to another. That is why the Peach source code was modified to the least possible extent and
the HotFuzz features were isolated in separate files wherever it was possible. The future of the
project and the advantage that it uses Peach that is actively contributed to was another reason for
choosing Peach.

6.2 Why the Wireshark Libraries are Used
One of the core functions of HotFuzz is understanding the communication that goes through it.

We needed to find a way how to inspect the communication and divide it to isolated messages
which can undergo a more detailed analysis so we are able to identify the smallest segments which
have its own meaning. This functionality is provided by the packet dissection process and the
packet dissection process is provided by the Wireshark libraries.

To tell the truth, the Wireshark libraries do not provide a nice and easy-to-use framework for
packet dissection since they are primarily designed to be used only by the Wireshark front-end. But
they contain an implementation of a very good packet dissection functionality and they are open
source so everyone can adapt them according to his individual needs.

The question that emerges from the previous text is obvious: Why to adapt libraries used
primarily for another purpose and not use some libraries specifically created for the packet
dissection? And the answer is: Because we have not found any. There are numerous tools in a form
of standalone applications that provide the packet dissection functionality but these are in vast
majority only wrappers around the Wireshark libraries.

So why not to use one of these wrappers or the Wireshark front-end itself instead of bending the
libraries on our own? We have thought about this possibility too but we did not want HotFuzz to be
a guardian of a set of independently running applications because it will greatly decrease the
stability of the final product and it will also create an unnecessary resource consumption since these
wrappers usually automatically provide functionalities we did not need (and automatically allocates
resources for them, of course). Because of these facts we decided to go the harder way and modify
the Wireshark libraries. We also created a small wrapper around them so they better suit our needs.

One notice at the end—if you choose to do something similar in your project we recommend you
to read the tm_export module documentation in the Data analysis section. It might definitely be
useful for you.

45

HotFuzz Developer’s guide

7 Future Work

The IT security community helped us at the beginning of this project in choosing the task to work
on. HotFuzz tries to fill a gap among open-source fuzzers and implements features that were
requested. It is the time (9/2010) to release the project and provide it back to the community.

We believe the project will be both used and developed further by those who are interested in
fuzzing. There are some areas to be enhanced listed here. Maybe this list can help other students to
choose their task to implement as a project.

1. Add a feedback system to Peach that would analyse a running target to provide the mutators
additional values allowing access to additional code paths.

This would require good debugging and reverse engineering skills along with Python and C
coding. It would probably be a more resource demanding project than HotFuzz.

For this somebody would need an ability to trace data through the running program, determine
when that data is used to cause a branch and feed back the value to the fuzzing engine that is
unknown.

2. Use dynamic and static analysis to produce a Peach data model automatically.

Currently the most time demanding operation of smart fuzzers is producing the data models that
define the structure of the data being fuzzed. Being able to produce a data model by analysing the
target process would be a big success. However, this would be even more resource demanding
project, than the one above.

7.1 GUI
There are some features that can be added to the GUI of HotFuzz as well:

3. Support for more Peach parameters and XML elements

The GUI application uses just a small subset of the Peach fuzzing framework features. The Peach
fuzzing framework can handle various additional command line options, which the current GUI
application does not consider. There are also more configuration options available through the
Peach XML configuration files than there are in the GUI application.

Unfortunately, Peach is a live project and it extends its setting options quite often, so it is not
possible to cover every option, but we can almost always extend the subset of Peach options that
can be altered by the GUI.

4. Better integration with external applications

External client applications are used during the fuzzing and recording phases. These applications
are necessary for creating input for the application, which we are going to fuzz. These applications
(e.g. a web browser) could provide information, which could be displayed within the GUI
application.

46

HotFuzz Developer’s guide

Unfortunately, modification of these applications is usually not easy and some of them aren’t
open-source. Thus the possibilities of “bending” these applications are quite limited. The ideal
solution would be to design and implement our own applications, which would perfectly fit into our
needs.

5. Crash logging extensions

The querying for informations about the crashes obtained in the fuzzing phase is quite clumsy at
the moment. It is caused by that the Peach stores the information about crashes in a rather odd
directory structure as text and dump files. Informations within these files have often some relations,
meaning and are structured.

It would be useful to force Peach to store these informations within a database, so the GUI
application could perform more complex queries over the dump info. Moreover, the GUI could also
modify and add its own records in the database (e.g. user comments, some record indicators like
“reported”, “fixed”, “examined”, …), thus creating a simple bug reporting system.

47

HotFuzz Developer’s guide

Appendix A: Structure of the HotFuzz Configuration
File

<?xml version="1.0" encoding="utf-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="Peach">
 <xs:annotation><xs:documentation>
 Root element of a Peach (HotFuzz) configuration file.
 </xs:documentation></xs:annotation>
 <xs:complexType>
 <xs:choice minOccurs="1" maxOccurs="unbounded">
 <xs:element ref="PythonPath" />
 <xs:element ref="Import" />
 <xs:element ref="Mutators"/>
 <xs:element ref="DataModel" />
 <xs:element ref="StateModel" />
 <xs:element ref="Agent" />
 <xs:element ref="Test" />
 <xs:element ref="Run" />
 </xs:choice>
 </xs:complexType>
 </xs:element>

 <xs:element name="PythonPath">
 <xs:annotation><xs:documentation>
 Includes an additional path for module resolution. HotFuzz uses this
element to include path to Peach.
 </xs:documentation></xs:annotation>
 <xs:complexType>
 <xs:attribute name="path" use="required">
 <xs:annotation><xs:documentation>
 Include this path when resolving Python modules.
 </xs:documentation></xs:annotation>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 <xs:element name="Import">
 <xs:annotation><xs:documentation>
 Import a Python file into the current context.
 </xs:documentation></xs:annotation>
 <xs:complexType>
 <xs:attribute name="from">
 <xs:annotation><xs:documentation>
 Python module name.
 </xs:documentation></xs:annotation>
 </xs:attribute>
 <xs:attribute name="import" use="required">
 <xs:annotation><xs:documentation>
 Python class name.
 </xs:documentation></xs:annotation>
 </xs:attribute>
 </xs:complexType>
 </xs:element>

48

HotFuzz Developer’s guide

 <xs:element name="Mutators">
 <xs:annotation><xs:documentation>
 Defines mutators to use for testing.
 </xs:documentation></xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Mutator" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="Mutator">
 <xs:annotation><xs:documentation>
 Includes a Mutator in this test.
 </xs:documentation></xs:annotation>
 <xs:complexType>
 <xs:attribute name="class" use="required" type="xs:string">
 <xs:annotation><xs:documentation>
 Class name of the Mutator to use
 </xs:documentation></xs:annotation>
 </xs:attribute>
 </xs:complexType>
 </xs:element>

 <xs:element name="DataModel">
 <xs:annotation><xs:documentation>
 DataModels are top level elements that describe the structure of
messages that are sent during the process of fuzzing. DataModels behave much
like Blocks.
 </xs:documentation></xs:annotation>
 <xs:complexType>
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="Block" />
 </xs:sequence>
 <xs:attribute name="name" type="xs:string">
 <xs:annotation><xs:documentation>
 Name of the DataModel. The name is used to reference the DataModel
by an action.
 </xs:documentation></xs:annotation>
 </xs:attribute>
 </xs:complexType>
 <xs:unique name="templateKey1">
 <xs:selector xpath="." />
 <xs:field xpath="@name" />
 </xs:unique>
 </xs:element>

 <xs:group name="dataTypes">
 <xs:choice>
 <xs:element ref="Block" minOccurs="0" />
 <xs:element ref="Number" minOccurs="0" />
 <xs:element ref="String" minOccurs="0" />
 <xs:element ref="Blob" minOccurs="0" />
 </xs:choice>
 </xs:group>

 <xs:element name="Block">
 <xs:annotation><xs:documentation>

49

HotFuzz Developer’s guide

 Blocks are combinations of other data elements combined in sequence to
produce a block of data. Blocks can contain other blocks, strings, numbers and
blobs.
 </xs:documentation></xs:annotation>
 <xs:complexType>
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:group ref="dataTypes" />
 </xs:sequence>
 <xs:attribute name="name" type="xs:string">
 <xs:annotation><xs:documentation>
 Name of the Block.
 </xs:documentation></xs:annotation>
 </xs:attribute>
 <xs:attribute name="defaultValue" type="xs:string">
 <xs:annotation><xs:documentation>
 The value is displayed to a user in the HotFuzz GUI in a human
readable form. The value is not used in fuzzing process. It is a concatenation
of values of the child elements of the block.
 </xs:documentation></xs:annotation>
 </xs:attribute>
 </xs:complexType>
 <xs:unique name="blockKey1">
 <xs:selector xpath="." />
 <xs:field xpath="@name" />
 </xs:unique>
 </xs:element>

 <xs:complexType name="tSimpleElement">
 <xs:attribute name="defaultValue" type="xs:string">
 <xs:annotation><xs:documentation>
 The value of the element that is displayed to a user in the HotFuzz
GUI in a human readable form. The value is not used in fuzzing process. The name
of the attribute is obsolete and will be changed during the future
refactorization.
 </xs:documentation></xs:annotation>
 </xs:attribute>
 <xs:attribute name="name" type="xs:string">
 <xs:annotation><xs:documentation>
 Name of the Element.
 </xs:documentation></xs:annotation>
 </xs:attribute>
 <xs:attribute name="value" type="xs:string">
 <xs:annotation><xs:documentation>
 The real value of the element that is used during the fuzzing process.
 </xs:documentation></xs:annotation>
 </xs:attribute>
 <xs:attribute name="isToken" type="xs:string">
 <xs:annotation><xs:documentation>
 Indicates that the element is a separator.
 </xs:documentation></xs:annotation>
 </xs:attribute>
 <xs:attribute name="valueType">
 <xs:annotation><xs:documentation>
 Indicates how should be the real value of this element interpreted.
 </xs:documentation></xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="string">
 <xs:annotation><xs:documentation>

50

HotFuzz Developer’s guide

 Regular string.
 </xs:documentation></xs:annotation>
 </xs:enumeration>
 <xs:enumeration value="literal">
 <xs:annotation><xs:documentation>
 Python literal string.
 </xs:documentation></xs:annotation>
 </xs:enumeration>
 <xs:enumeration value="hex">
 <xs:annotation><xs:documentation>
 Hex string. Allows specifying binary data.
 </xs:documentation></xs:annotation>
 </xs:enumeration>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="mutable" type="xs:string">
 <xs:annotation><xs:documentation>
 Indicates whether this element is allowed to be altered during the
fuzzing process.
 </xs:documentation></xs:annotation>
 </xs:attribute>
 </xs:complexType>

 <xs:element name="Number" type="tSimpleElement">
 <xs:annotation><xs:documentation>
 Peach Number element.
 </xs:documentation></xs:annotation>
 <xs:unique name="numberKey1">
 <xs:selector xpath="." />
 <xs:field xpath="@name" />
 </xs:unique>
 </xs:element>

 <xs:element name="String" type="tSimpleElement">
 <xs:annotation><xs:documentation>
 Peach String element.
 </xs:documentation></xs:annotation>
 <xs:unique name="stringKey1">
 <xs:selector xpath="." />
 <xs:field xpath="@name" />
 </xs:unique>
 </xs:element>

 <xs:element name="Blob" type="tSimpleElement">
 <xs:annotation><xs:documentation>
 Peach Blob element.
 </xs:documentation></xs:annotation>
 <xs:unique name="blobKey1">
 <xs:selector xpath="." />
 <xs:field xpath="@name" />
 </xs:unique>
 </xs:element>

 <xs:element name="StateModel">
 <xs:annotation><xs:documentation>
 Defines a state machine to use during a fuzzing test. State machine in
HotFuzz is used only as a simple package that stores the data recorded during
the recording phase.

51

HotFuzz Developer’s guide

 </xs:documentation></xs:annotation>
 <xs:complexType>
 <xs:sequence minOccurs="1" maxOccurs="1">
 <xs:element name="State" minOccurs="1" maxOccurs="unbounded">
 <xs:annotation><xs:documentation>
 The State element defines a sequence of Actions to perform. State
in HotFuzz is used only to store the actions recorded during the recording
phase. Only one State is currently needed to store the aggregated actions.
 </xs:documentation></xs:annotation>
 <xs:complexType>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="Action" minOccurs="1" maxOccurs="unbounded"/>
 </xs:choice>

 <xs:attribute name="name">
 <xs:annotation><xs:documentation>
 Name of the state.
 </xs:documentation></xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="Initial">
 <xs:annotation><xs:documentation>
 The State that stores the recorded actions currently
needs to be called "Initial". This limitation will be removed during the future
refactorization.
 </xs:documentation></xs:annotation>
 </xs:enumeration>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:sequence>

 <xs:attribute name="name" type="xs:string" />

 <xs:attribute name="initialState" type="xs:string">
 <xs:annotation><xs:documentation>
 Name of the initial state. HotFuzz currently uses only one state, so
this attribute should point to this state.
 </xs:documentation></xs:annotation>
 </xs:attribute>
 </xs:complexType>
 </xs:element>

 <xs:element name="Action">
 <xs:annotation><xs:documentation>
 Defines a recorded action.
 </xs:documentation></xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="DataModel" minOccurs="0" maxOccurs="1" >
 <xs:complexType>
 <xs:attribute name="name" type="xs:string"/>
 <xs:attribute name="ref" type="xs:string">
 <xs:annotation><xs:documentation>
 Reference to a DataModel that represents structure of the data
being sent in this action.
 </xs:documentation></xs:annotation>

52

HotFuzz Developer’s guide

 </xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:sequence>

 <xs:attribute name="name" type="xs:string" />

 <xs:attribute name="type">
 <xs:annotation><xs:documentation>
 The type of the action.
 </xs:documentation></xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="input">
 <xs:annotation><xs:documentation>
 Represents sending data from server to client
 </xs:documentation></xs:annotation>
 </xs:enumeration>
 <xs:enumeration value="output">
 <xs:annotation><xs:documentation>
 Represents sending data from client to server.
 </xs:documentation></xs:annotation>
 </xs:enumeration>
 <xs:enumeration value="close">
 <xs:annotation><xs:documentation>
 Indicates that iteration should be terminated when server
closes the connection.
 </xs:documentation></xs:annotation>
 </xs:enumeration>
 <xs:enumeration value="connect">
 <xs:annotation>
 <xs:documentation>
 HotFuzz currently uses this action as an empty action with no
functionality.
 </xs:documentation>
 </xs:annotation>
 </xs:enumeration>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>

 <xs:attribute name="terminateTestCase" type="xs:string">
 <xs:annotation>
 <xs:documentation>
 When set to True, this attribute indicates that when the DataModel
of this action is matched, the iteration should be terminated.
 </xs:documentation>
 </xs:annotation>
 </xs:attribute>
 </xs:complexType>
 </xs:element>

 <xs:element name="Agent">
 <xs:annotation><xs:documentation>
 Configuration of an agent.
 </xs:documentation></xs:annotation>
 <xs:complexType>
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="Monitor" minOccurs="1" maxOccurs="1"/>

53

HotFuzz Developer’s guide

 </xs:sequence>

 <xs:attribute name="name" use="required">
 <xs:annotation><xs:documentation>
 Name of the agent. User needs to use names ClientAgent and
ServerAgent to provide information, which is used for client application and
which for server application. This limitation will be removed during the future
refactorization.
 </xs:documentation></xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="ClientAgent">
 <xs:annotation><xs:documentation>Represents the agent for the
client application.</xs:documentation>
 </xs:annotation>
 </xs:enumeration>
 <xs:enumeration value="ServerAgent">
 <xs:annotation><xs:documentation>Represents the agent for the
server application.</xs:documentation>
 </xs:annotation>
 </xs:enumeration>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="password" type="xs:string">
 <xs:annotation><xs:documentation>
 Password to the remote agent if needed.
 </xs:documentation></xs:annotation>
 </xs:attribute>
 <xs:attribute name="location" type="xs:string">
 <xs:annotation><xs:documentation>
 Specify location of the agent - host and port where it is listening.
The host can be the hostname/ipaddress of the agent. The location string needs
to have following format: http://AGENT_HOST:AGENT_PORT
 </xs:documentation></xs:annotation>
 </xs:attribute>
 </xs:complexType>
 </xs:element>

 <xs:element name="Monitor">
 <xs:annotation><xs:documentation>
 Monitor is an agent module that can perform a number of tasts such as
monitoring a target application to detect faults, restarting applications, etc.
 </xs:documentation></xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Param" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="name" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="ProcessName">
 <xs:annotation><xs:documentation>
 HotFuzz uses this parameter to distinguish various
monitors. The necessity of this parameter will be eliminated during the future
refactorization.
 </xs:documentation></xs:annotation>
 </xs:enumeration>
 <xs:enumeration value="CommandLine">

54

HotFuzz Developer’s guide

 <xs:annotation><xs:documentation>
 Commandline command, which is used to start the tested
application.
 </xs:documentation></xs:annotation>
 </xs:enumeration>
 <xs:enumeration value="ActivatingCommand">
 <xs:annotation><xs:documentation>
 Commandline command, which is used to activate the
application. Only used if StartOnCall is not specified.
 </xs:documentation></xs:annotation>
 </xs:enumeration>
 <xs:enumeration value="StartOnCall">
 <xs:annotation><xs:documentation>
 Optional: Indicates that the application should be
restarted at each iteration.
 </xs:documentation></xs:annotation>
 </xs:enumeration>
 <xs:enumeration value="SymbolsPath">
 <xs:annotation><xs:documentation>
 Optional: Path to the Windows symbols. The symbols can
help Windows Debugging Tools to provide additional information about successful
crashes.
 </xs:documentation></xs:annotation>
 </xs:enumeration>
 <xs:enumeration value="RunningOnPort">
 <xs:annotation><xs:documentation>
 Optional: Specifies port on which the tested application
will be listening. This allows better monitoring capabilities and it is advised
to specify the parameter whenever possible. The string needs to have following
format: PORT_NUMBER/PROTOCOL_FAMILY (for example 80/tcp)
 </xs:documentation></xs:annotation>
 </xs:enumeration>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="value" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" >
 <xs:annotation><xs:documentation>
 Name of monitor. Will be used when logging monitor information.
 </xs:documentation></xs:annotation>
 </xs:attribute>
 <xs:attribute name="class" use="required">
 <xs:annotation><xs:documentation>
 Specify the Python class name of a Peach Monitor class.
 </xs:documentation></xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="ppmonitor.WindowsDebugEngine">
 <xs:annotation><xs:documentation>
 Custom HotFuzz debug monitor that uses Windows Debugging tools
to monitor the tested application.
 </xs:documentation></xs:annotation>
 </xs:enumeration>
 <xs:enumeration value="ppprocess.Process">
 <xs:annotation><xs:documentation>
 Custom HotFuzz monitor for handling basic process

55

HotFuzz Developer’s guide

manipulation.
 </xs:documentation></xs:annotation>
 </xs:enumeration>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>

 <xs:element name="Test">
 <xs:annotation><xs:documentation>
 Define a test to run.
 </xs:documentation></xs:annotation>
 <xs:complexType>
 <xs:choice minOccurs="1" maxOccurs="unbounded">
 <xs:element name="StateModel" minOccurs="0" maxOccurs="1">
 <xs:annotation><xs:documentation>
 Reference an already declared StateMachine.
 </xs:documentation></xs:annotation>
 <xs:complexType>
 <xs:attribute name="ref" type="xs:string" />
 </xs:complexType>
 </xs:element>

 <xs:element name="Agent" minOccurs="2" maxOccurs="2">
 <xs:annotation><xs:documentation>
 Reference a defined agent to use with test.
 </xs:documentation></xs:annotation>
 <xs:complexType>
 <xs:attribute name="ref" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>

 <xs:element ref="Publisher" minOccurs="1" />
 </xs:choice>

 <xs:attribute name="name" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>

 <xs:element name="Publisher">
 <xs:annotation><xs:documentation>
 Define the publisher to use for this test. HotFuzz currently uses only
one publisher - its own custom publisher. The publisher requires following
parameters: clientHost, clientPort, serverHost, serverPort, protocolFamily,
protocolPort, communicationTimeout.
 </xs:documentation></xs:annotation>
 <xs:complexType>
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="Param" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="name" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="clientHost">
 <xs:annotation><xs:documentation>
 The host to which client will be connecting.
 </xs:documentation></xs:annotation>
 </xs:enumeration>

56

HotFuzz Developer’s guide

 <xs:enumeration value="clientPort">
 <xs:annotation><xs:documentation>
 The port to which client will be connecting.
 </xs:documentation></xs:annotation>
 </xs:enumeration>
 <xs:enumeration value="serverHost">
 <xs:annotation><xs:documentation>
 The host on which the server will be running.
 </xs:documentation></xs:annotation>
 </xs:enumeration>
 <xs:enumeration value="serverPort">
 <xs:annotation><xs:documentation>
 The port on which the server will be listening.
 </xs:documentation></xs:annotation>
 </xs:enumeration>
 <xs:enumeration value="protocolFamily">
 <xs:annotation><xs:documentation>
 The protocol family that will be used for the
communication (TCP/UDP).
 </xs:documentation></xs:annotation>
 </xs:enumeration>
 <xs:enumeration value="protocolPort">
 <xs:annotation><xs:documentation>
 The port characterizing the protocol that will be used
for the communication.
 </xs:documentation></xs:annotation>
 </xs:enumeration>
 <xs:enumeration value="communicationTimeout">
 <xs:annotation><xs:documentation>
 How many seconds should proxy wait for messages from
client and server until it terminates the iteration.
 </xs:documentation></xs:annotation>
 </xs:enumeration>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>

 <xs:attribute name="value" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>

 <xs:attribute name="class" use="required">
 <xs:annotation><xs:documentation>
 Specify the Python class name of a Peach publisher class.
 </xs:documentation></xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="pppublisher.ClientServer">
 <xs:annotation><xs:documentation>
 HotFuzz publisher that stores all the information required for
client-server communication.
 </xs:documentation></xs:annotation>
 </xs:enumeration>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>

57

HotFuzz Developer’s guide

 <xs:element name="Run">
 <xs:annotation><xs:documentation>
 Configuration of the overall fuzzing process.
 </xs:documentation></xs:annotation>
 <xs:complexType>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="Logger" minOccurs="0" maxOccurs="1">
 <xs:annotation><xs:documentation>
 Specify a a logging mechanism for fuzzing Run.
 </xs:documentation></xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Param" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="name" type="xs:string" use="required" />
 <xs:attribute name="value" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="class" use="required">
 <xs:annotation><xs:documentation>
 Specify the Python class name of a Peach Logger class.
 </xs:documentation></xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="logger.Filesystem">
 <xs:annotation><xs:documentation>
 Log to a path on the file system. Requires a single
parameter named "path" with the fully qualified path place logged information.
This will include any data reported by Agents and Monitors along with a text
file containing the sent and received data for each logged test.
 </xs:documentation></xs:annotation>
 </xs:enumeration>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 <xs:element name="Test" minOccurs="1" maxOccurs="1">
 <xs:annotation><xs:documentation>
 Reference a test to use for in this run.
 </xs:documentation></xs:annotation>
 <xs:complexType>
 <xs:attribute name="ref" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>
 </xs:choice>

 <xs:attribute name="name" type="xs:string" />
 </xs:complexType>
 </xs:element>

</xs:schema>

58

	1 Introduction
	1.1 Purpose of the Project
	1.2 Components
	1.3 Similar Work
	The Peach Fuzzing Platform
	Fusil the fuzzer
	Sulley
	Bunny the Fuzzer
	SAGE
	TAOF
	SPIKE
	Webfuzzer
	Scratch
	Mangle

	2 Employed Technologies
	2.1 Peach
	2.2 Wireshark
	2.3 Qt

	3 Architecture
	3.1 Peach in the Middle
	Peach
	Pitm
	GUI Communicator
	Pitm Schema
	Proxy – TCP Version
	Handling Data
	Recording/Fuzzing
	Finishing the Iteration
	Monitoring the Applications
	Proxy – UDP Version

	Pitm Files Overview

	3.2 Data Analysis
	Data2pcap Module
	Data2pcap in HotFuzz
	Data2pcap Usage
	How to Create a Fake UDP Packet and Save it to a Pcap File
	How to Create a TCP Packet and Save it to a Pcap File
	Create a TCP Connection
	Modification and Extension of Data2pcap
	Module tm_export
	Introduction
	Technical Issues
	Usage
	Example Usage
	Input/Output Structures
	Modification and Extension of tm_export

	Calling Wireshark Code from Python
	Converting Wireshark Structures into Peach Structures

	3.3 Data Matching
	3.4 Recorded Data Aggregation
	3.5 Structure of the HotFuzz Configuration File

	4 GUI
	Source Code Generation
	Main Functions Overview
	Application File Overview
	4.1 Dialogs
	Basic Dialog Logic
	Standard Qt Dialogs
	Main Window Dialog
	Application Settings
	Intro Dialog
	Preferences Dialog
	New Project Dialog
	Recent Project Dialog
	Project Info Dialog
	Action View Dialog

	4.2 Projects
	Project Files
	XML Manipulation
	Dump Files

	4.3 Widgets
	Own Widgets
	Qt Designer Plugin
	Undo Actions

	4.4 External Programs
	Peach Communicator
	Starting Pitm
	Stopping Pitm

	5 Development of HotFuzz
	5.1 History of the Project
	5.2 Development of the Dissection Process in HotFuzz

	6 Strategic Decisions
	6.1 Why Peach is Used
	6.2 Why the Wireshark Libraries are Used

	7 Future Work
	7.1 GUI

	Appendix A: Structure of the HotFuzz Configuration File

